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We describe a new and powerful computer program called
TRIPLE_GRADIENT which calculates optimized pulsed field
gradient sequences for specific coherence pathway selection or
rejection. Sequences can be computed for gradient coils acting
along one, two, or three perpendicular axes. The program is based
on the computational minimization of a penalty function formed
from the summed amplitudes of the unwanted signals. The un-
derlying mathematical analysis makes use of a vectorial represen-
tation of the way in which a gradient sequence suppresses different
signals. It is argued that experiments using well-calculated gradi-
ent sequences are quicker and generally perform better than those
using extensive phase cycling, especially when suppressing ex-
tremely strong solvent signals, and it is shown that in many cases
gradient experiments of optimal signal-to-noise ratio can be per-
formed. These claims are illustrated by spectra obtained from an
HQQC experiment. © 1999 Academic Press
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1. INTRODUCTION

the spin isochromates in proportion to the quantum coheren
order. We call this effect “dephasing,” and its reversal is
referred to as “rephasing.” Gradient selection can be preferak
to phase cycling on account of advantages including reduce
measurement times, reduction gfnoise {), use of the full

range of the analog to digital converter, and improved solver
suppression8). To find optimal gradient sequences is, how-
ever, not intuitively easy, especially for the relatively long RF
pulse sequences of multidimensional NMR spectroscopy.

In most cases nowadays, a gradient sequence is primar
tuned to rephase the wanted coherence transfer pathways,
there is no guarantee that the unwanted signals are prope
suppressedd). Special complications arise when phase-sens
tive spectra are required, because it is then necessary to det
simultaneously P- and N-type pathways. This is not a probler
when phase cycling is applied. However, if gradients are use
it is often difficult to find gradient sequences that rephase th
two types of pathway simultaneously and yet still sufficiently
suppress the unwanted ond®(1J.

Mitschanget al. addressed these conceptual problems re

A high-resolution NMR experiment is defined by a sequenggntly by introducing a geometric description of the calculatior

of radiofrequency (RF) pulses and a procedure for selectingggradient sequence42). In principle, field gradients can be
required set of coherence transfer pathways. Generally speglplied with arbitrary amplitude in any free precession periot
ing, an RF pulse sequence excites an enormous numbekfthin the RF pulse sequence, forming an infinite multitude o
coherence transfer pathways. Some of these pathways leagdgntial gradient sequences for the experiment. The geomet
the signals of interest (“wanted pathways”), which we woulghymalism allows us to determine a sequence of pulsed fiel
hope to be able to detect without interference. Other (Hunwa’&fadients that can rephase as many wanted pathways as p
ed”) pathways must be suppressed so that they do not complisie and also strongly dephase the unwanted pathways. T
cate the spectrum. Phase cyclifg-§) is the most commonly formajism was originally developed under the assumption the
applied approach for this purpose, but it has been showgy gradients are applied only along a single spatial directio
recently that multidimensional NMR spectroscopy can als(ﬂormally parallel to the Zeeman field, i.e., Z-gradient’)
make use of pulsed field gradients for pathway selectn (12 an"extension to the case where field gradients can b
7, 37). Gradients induce a position-dependent distribution E)plied in three mutually orthogonal directions<¢ Y-, and

1 To whom correspondence concerning the program should be addressétgradients”) is discussed in Partll3). It has been shown that
>To whom correspondence concerning the experiments should be gtadient sequences that rephase wanted pathways but stron
dressed, at current address: Columbia University, Department of Chemisﬂéphase unwanted ones can be found in favorable cases

3000 Broadway, New York, NY 10027. . . .
® Current address: Forschungsinstitiit fmolekulare Pharmakologie, Al- solvmg an el,genvalue probleni?) whose solution tends to
fred-Kowalke-Str. 4, 10315 Berlin-Friedrichsfelde, Federal Republic of GeRPecify gradient sequences that suppress the strongest |

many. wanted pathways (i.e., with the largest coherence orders) b

1090-7807/99 $30.00 10
Copyright © 1999 by Academic Press
All rights of reproduction in any form reserved.



NMR SIGNAL SELECTION: Il. GRADIENT PULSE SEQUENCE DESIGN 11

may fail to suppress weaker ones. It is difficult to steer thguent equations retain their validity when a so-called compo:
solution of the eigenvalue problem toward gradient sequendtscoherence order is used instea®,(15. g*, 9", andg” are
that suppress efficiently the most important unwanted pathectors that represent sequences of pulsed field gradients ¢
ways. In order to be able to solve the general case routinely gited along theX-, Y-, and Z-axes, respectively. Theth
reliably, a numerical procedure is clearly required. componenty} = G} f,(7)dr is the effective strength or
In this paper we present an algorithm built on the geoméimpact” of a field gradient applied along the specified
rical nature of the earlier workl@, 13. The calculation of an direction in therth period of free precessioG; being the
optimal gradient sequence by solving an eigenvalue problenaisiplitude of the field gradient,, its duration, and,(7) the
abandoned in favor of a direct computational minimization dfime profile of the pulsel(3). p, g*, g", andg” are vectors
a realistic estimator of the residual magnitudes of the unwantied Euclidean spaces isomorphic to and modeled Ry,
signals. The maximum possible amplitude of the field gradienthereF is the number of periods of free precession of the
is also taken into account, and different gradient pulses agperiment in question. The radial component of the
allowed different durations in order to tailor the gradient savavevector isk, = (ki + kJ)"?. The sample volume
guence realistically for the particular NMR experiment. Theffected by a field gradient is taken to be a cylinder of heigh
corresponding computer program is called “TRIPLE_GRADL and radiusR with its center at the origin of the coordinate
ENT.” It is designed specifically for the optimal implementasystem and its axis of cylindrical symmetry along the Zee
tion and use of field gradients by the experimentalist. man field.
The organization of the paper is as follows: in Section 2, the The reduction in amplitude of a signal when field gradient:
geometric approach to pathway selection of the earlier workase applied 13) is given by
summarized, as far as it concerns the present work; in Section
3, the algorithm of TRIPLE_GRADIENT is described in the
general case when field gradients can be applied along any a(k) = o(0)
spatial direction; the details of the mathematics are described in
the Appendices; finally, an example in which TRIPLE_GRA-
DIENT is applied to optimize the pathway selection by pulsedhered,( - ) is the Bessel function of first kind and first order
field gradients in @H/**C correlation experiment is discussed14). Strictly speaking, Eq. [2.2] applies only when the exci-
extensively in Section 4. Measured spectra are also presentatipn profile of the RF coils is completely uniform within the
demonstrating the rephasing of several and complementagmple volume, but we do not address further in this work th
wanted pathways to obtain phase-sensitive spectra in a singhplied approximation when this assumption fails.
scan. Gradients are applied in the evolution period of theseThe ultimate attenuation of a pathway depends on the vect

2J,(k,R) sin(k,L)
k.R kL 7

[2.2]

experiments. argumentk, which appears as the scalar componéntsndk,
in Eq. [2.2].R andL are constants, bt itself depends on the
2. GEOMETRICAL ANALYSIS OF inner product, Eq. [2.1], which is what makes it possible tc
PATHWAY SELECTION interprete the mechanism of pathway selection geometricall

A pathway is rephased (i.e., not perturbed} £ 0 when field
A field gradient exposes a spin system to an inhomogenayadients are applied. In this case, the vecgtsg’, andg”
magnetic field whose gradient is usually aligned along thepresenting the sequences of pulsed field gradients appli
otherwise homogenous Zeeman field. We assume that Hieng the different directions are orthogonal to the vegtor
equipment allows the generation of spatially uniform fielgepresenting the coherence transfer pathway.kFer 0, i.e.,
gradients along one or more of the three mutually orthogonigbne or several of the vectog’, g¥, andg® are not orthog-
directions defined as the conventional laboratsry Y-, and onal top, the pathway is dephased and hence attenuated to
Z-axes. As is conventional, we tie our laborat@raxis to the certain extent. Generally speaking, the larger the inner produ
direction of the Zeeman field. We then define the wavevectgetween the pathway and the sequences of field gradients, 1
greater is the achievable attenuation of the signal because
K, p-g* the way in which Eq. [2.2] falls off.
k = (ky> = 'y( p- gY) , [2.1] The overall vector spac®", splits naturally and advanta-
K, p-g” geously into three partd8). The first is the subspace spanned
by the wanted pathways, and is hence called “selective.” Tt
wherevy is the gyromagnetic ratio of one of the nuclear speciesmaining part oRR" is decomposed into two further parts. The
involved in the experimentl@) andp is a vector representing suppressive subspace comprises the components of the |
a particular coherence transfer pathway. In the homonucleganted pathways outside of the selective subspace, whilst t
case, thath component op is the coherence order prevailingfree subspace is any remaining parff that can be spanned
in the rth period of free precession of the experiment ineither by a wanted nor by an unwanted pathway.
qguestion 15), and in the heteronuclear case this and subse-The condition that a gradient sequence not perturb th
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. Read in Perform Gram-Schmidt Gram-Schmidt on
Read in names of # of pathways - ;
F——— . . . |——® algorithm on wanted ——————®»  selective space and
I/P and O/P files # of free precession periods athways unwanted pathways
# of gradient pulses etc. p Y P >
Free subspace Selective subspace Suppressive subspace
. Gram.Schmid on / '
Print out vectors l————— entire space
\ Reject redundant Check for pathways
athways <@——1 that cannot be
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representing
entire space
EYa!uate sfe;[;;all{ - 89“ answers and Print out answers in Write best result
minima of NMR signa ——® feject any redundant > order of quality ’ to O/P file
and penalty signal copies

FIG. 1. Flow chart of the TRIPLE_GRADIENT program. The arrows with filled heads denote passage of program control. The arrows with open
denote flow of data.

wanted signals can now be met simply by generating it froeometimes not desirable, and certain periods are better €
within the suppressive and free subspaces, and avoiding theded, e.g., very short periods or periods in which a fielc
selective one. The suppression of unwanted pathways depegidslient might interfere with RF decoupling pulses. TRIPLE
entirely on components from the suppressive subspace, a@®RADIENT therefore allows the user to specify which peri-
any adjustments of the sequence to accommodate instrumeats of free precession to use. The duration of each gradie
limitations are controlled by admixture of components from theulse must also be specified (in milliseconds). This makes
free subspace. Optimization proceeds by the route of minimjzessible to maximize the overall strength of a gradient se
ing the sum of the amplitude of all unwanted signals (so thgtience, since different gradient pulses can be adapted to t
the worst receive the most attention) plus a smooth penafiming of the RF pulse sequence. On some spectrometers it

function describing instrumental limitations. possible to vary the time profiles of the gradient pulses, but th
program currently assumes the use of rectangular ones. T
3. THE ALGORITHM number of periods of free precession allowed to contain

gradient pulse defines the dimension of the entire space (i.¢
A flow-chart diagram of the successive computational stef§ when all periods of free precession are allowed) which i
in TRIPLE_GRADIENT is shown as Fig. 1. The algorithmlater decomposed into the three subspaces. The choice
(described in detail in this section and in the appendices) ugesiods of free precession in which field gradients might b
directly the geometrical analysis outlined in the precedimpplied is therefore a crucial step in the procedure, as will b
section. outlined in Section 4 by several examples. In the subseque
TRIPLE_GRADIENT reads as input a list of all excitedcalculations within TRIPLE_GRADIENT, the pathway vectors
coherence transfer pathways that are considered to be imprthe input file are reduced to components corresponding |
tant. Each pathway is coded as an arrayFofeal numbers the user’s choice of periods of free precession.
which are the respective coherence orders of the specified’he next steps are the explicit calculation of the selective
pathway prevailing in theé= free precession periods of thesuppressive, and free subspaces by repeated application of
experiment. The user must specify which pathways are want8cam—-Schmidt procedurel§) (see Fig. 2). Specifically, the
and which unwanted. In principle, field gradients may bgelective subspace is generated by applying the Gram—-Schm
applied in any of thé= periods of free precession, but this isalgorithm to the set of all wanted pathways. The suppressi\
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function representing residual unwanted signals.

The construction of a penalty function starts from Eq. [2.2].
Ideally, Eq. [2.2] would be a good description of the decay o
—}- \ * ’ a single unwanted pathway, but in practice neither the require

‘ ‘M These are varied independently to minimize a suitable penal

ment for constant gradients nor that for uniform excitation by
the RF pulses is satisfied, and Eq. [2.2] must be regarded as
approximation. Experiments (not presented) have also col

‘ firmed that it is not feasible to adjust conditions in order tc
w ; work at a zero-crossing point of Eq. [2.2]. The best strateg)
therefore, seems to be the simple one of maximizing th
argumentsk, andk,. This works because the envelope of the
(oscillatory) function sin{)/v = sinc{) falls as 1jv|, and the
% ‘ envelope of the (oscillatory) functionJ2(v)/v falls approxi-
\

R mately asm/2|v|** (14). Following this reasoning, the atten-
| uation of a single pathway is monitored by fitting an envelop

FIG. 2. The vector spaces subjected to the Gram—Schmidt algorithm.TfjrénCtIon to Eq. [2.2]. The envelop? of the sinc function '_S
set of vectors representing wanted pathways are shown diagrammatically 46Bresented accurately by a specifically constructed functic
usually nonsquare matriw/ in row 1. This set is fed as input to the Gram—called sincenv, and the envelope of the functiah(2)/v is
Schmidt algorithm, which outputs a usually smaller maSisepresenting the approximated to more than adequate accuracy by a similar
selective subspace in rows 2, 3, and 4. Once calcul&é&dheld fixed. Then constructed function, Bessenv. The construction of these e

the set of unwanted pathways is assembled into a midtaxd appended t6 | f . is di di d ilin A dix A1
(row 2). The combined pair are again fed as input to the Gram-Schmift'OP€ unctions is discussed Iin greater detail in Appendix

algorithm, and the result is the generally nonsquare m&Rx S being as 1he penalty function actually minimized must take into ac-
before, andR being the suppressive subspace (row 3). ISk is not allowed count the residual signals of all unwanted pathways, which w
to change once it is calculated. Finally, the unit matrix, representing the fy{lrite as

space, is appended 8Rand the entire matrix subjected to the Gram—-Schmidt

algorithm a third and final time. This timleis reduced td-, representing any

remaining free subspace (row 4). N = > w Bessenik,R)sincenvk,L). [3.1]

The weightsw can be set by the user and can represent th
subspace is then generated by applying the Gram-Schmvdtious expected amplitudes of different signals, but ca
algorithm both to the selective subspace (now held fixed) aggually be set to other values to express varying experiment
to the unwanted pathways. Finally, a unit matrix (representifnphases. As described above, each of the sequences of pul
the entire space) is appended to both the selective and supplieid gradients applied along th€-, Y-, or Z-axes is repre-
sive subspaces and the Gram—Schmidt algorithm is appliegeted by a linear combination of the base vectors of th
third time (both the selective and suppressive subspaces ridipPressive and the free subspace. These linear coefficie
being held fixed). Any surviving vectors define the free sul§Nter as free parameters the penalty function via its argume
space. The program issues warning messages for any unwafftégefined in Eq. [2.1]), together with the components alon
pathways that lie in the selective subspace since they havelle SuPPressive subspace of the unwanted pathways. Equat

component along the suppressive subspace, making it imp@s-ll adopts its minimum for the gradient sequences that s

sible to find an appropriate gradient sequence. Such unwarfiayi@neously rephase all wanted pathways while maximall

pathways are excluded from further calculation. dephasing the unwanted ones.

. . C
Any gradient sequence that rephases all wanted pathways lt%S Itt ﬁtq?%s, .the regpontsr]e S|tgnal t?]bovfe tr? ar]:_ t;g de(ar-ea]
represented by a vector within the suppressive and free sypp=1out imit by ncreasing the strengtns of the Tield gradien
. . . . pulses. Real gradients are limited, however, and it is also n

spaces (i.e., the entire space excluding the selective space), an . . . .
] o . necessarily desirable to use the maximum values available, f
correspondingly any vector within this common space corre- . . .
%ﬁ;\mple because of fears of nonlinearity, massive eddy cu

sponds to a gradient sequence that rephases all wanted p . .
. . rents, and other possible problems. For this reason, TRIPL
ways. The next computations in TRIPLE_GRADIENT are tOGRADIENT also includes a penalty function that rises

calculate the most efficient gradient sequences, i.e., those gfbothly to infinity as each gradient pulse approaches a pr
most effectively minimize 'the residual signals .from unwapte tribed limit. This function has the form

pathways. The sequence is represented as a linear combination

of the base vectors of the suppressive and free subspace as

obtained by the Gram-Schmidt algorithm described above. P=> . >,
Thus, the actual free parameters are the linear coefficients. r 26" -9

cg?

3.2]
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whereg is the maximum permitted strength of a gradient pulsejents are generally not forthcoming in practice because
andg;, represents the strength of a single gradient pulse appligahlinear effects not included in the calculations.

in the rth period of free precessiorfy is calculated as the

integral of the time profile of the specified pulse over its 4, EXAMPLE AND RESULTS

duration multiplied by the maximum possible amplitude of the

field gradient. We set the latter to 50 G chror longitudinal ~ TRIPLE_GRADIENT calculates optimized gradient se-
gradient pulses, and to 35 G chnfor the transverse ones,quences for the pathway selection problem specified in its inp
though these values are installation-dependent. The spedife The user defines whether a specific pathway is wanted «
form of the limiting function is dictated by the requirement thatot and at which positions in the RF pulse sequence a fiel
the curvatures at the origin have uniform controllable values #adient can be applied. It is therefore the user’s task to fin
minimize any perturbation to the normal running of the minitequirements appropriate for a well-executed experiment. Tt
mization routine in this region. The contours of this instrumer§'ux is the distribution of the pathways with respect to the
tal penalty function are isotropic (i.e., circular, spherical, hyselective and suppressive subspaces. For a given choice of f
perspherical, etc.) near the origindgifis the same for all pulses Precession periods, the selective and suppressive subsp;
in the sequence, but they blend smoothly into a rectanguf@fM & common space of fixed size, being the space spanned
shape as the instrumental limits are approached (a simifiy Pathways. In general, the higher the number of wante
function has been used before in a different applicat®))( pathways, the larger will be the selective space, and the small

This means that when degrees of freedom exist (i.e., there i'§ SUPPressive subspace. In some cases it may even be tha

free subspace), the overall profile of the pulse sequence may/i5&dom remains, and it may no longer be possible to suppre

altered to make maximal use of the instrumental capabilitieoMe Important pathways (see Par18)). On the other hand,

As with any minimization problem, care must be taken tif" & 9iven set of wanted and unwanted pathways, the numb

avoid the possibility of becoming trapped in a local minimurﬂf unwanted pathways with a component outside the selecti\

and thus failing to find a better solution. Our resolution of thigPace depends on the choice of free precession periods, an

problem has been to restart the minimization a specified nufji- be important to make this choice in a way that maximize

ber of times (usually 16 for a single gradient, and 64 for ac d!menglon of t'he SUppressive subspape. Clearly, thIS.C
) ) mension will be at its largest when all possible free precessic

triple-gradient probe) and then to select the best result. It often . . : .
iods are used. It is, however, generally desirable to switc

happens that results are coincident, and the program inclufes : . ! T
. : as few gradient pulses as possible, particularly for invisci
code to reject the redundant solutions.

. samples, in order to minimize signal loss from translationa
¢ I'lAt t_he _er;d of ta ru;1_,h TEIPLE—GIRADIELT]T pr?w?_es thediffusion (31). In this particular case, it is also preferable that
oflowing information. The base vVectors ot Ihe Selective, .Su‘?ﬁ? gradient pulses be applied in neighboring free precessi
pressive, and free subspaces are listed with an 'nd'cat'onp%riods Use of TRIPLE_GRADIENT therefore proceeds ir

unwanted pathwgys that ."? iU th.e selecti\'/e's'ubspace and grg steps: first, the best set of wanted and unwanted pathwa
therefore not subject to minimization. The limiting strengs, ;g evaluated, usually allowing all periods of free precession t

are given for the different pulses along all three directions ('B]5 used; second, any gradient pulses that are not strictly r
ms G cm’). The best solution of the different trials of mini-

= 2 M _ i . _quired are eliminated. These methods are illustrated for tr
m|xzat|Yon, |.e.,zthe optimal sequences of pulsed field gradientiga| selection using the heteronuclear quadruple quantu
(9%, g, andg’), along theX-, Y-, andZ-axes is printed out. coherence (HQQC) correlation technique7 (18, 30. The
The strength (in ms G cm) and duration (in ms) of each pulse sequence of this experiment and the pathways to |
pulse, the latter as set by the user, and its calculated amplitu@ected are shown in Fig. 3. The key element of the exper
(in G cm™) are also printed out. Strength and amplitude botient is the generation of HQQC at the beginning .pfwhich
carry a sign to indicate the relative direction of the fielgs then typically utilized as a filter for CHgroups. The stan-
gradients. It may be that in a given solutigh, g', andg” are  gard technique, however, suffers the disadvantage of needi
identical apart from scale, as discussed in Pait3).(In this o fewer than 24 steps of phase cycling to select the CF
case, the application of any of these sequences alone will yiglgnals properly. Signal selection in the HQQC experiment ha
qualitatively the same result. To identify these cases, the v@feen treated before by solving an eigenvalue problem: it we
tors representing the best solution are shown a second time, eésible to calculate a sequence of pulsed field gradients whi
normalized to unit length, and their inner products are calcittenuated all of the unwanted pathways but it rephased on
lated. Results near to-1 indicate equivalent gradient se+two of the eight wanted pathway43d). These two pathways
quences. Finally, all unwanted coherence transfer pathways are of the same P-type, so the spectra had to be processec
listed with their residual amplitudes if the best solution is usedbsolute valuesl@). We have used TRIPLE_GRADIENT to
The simultaneous application of two or three identical seeexamine the pathway selection in this HQQC experimen
guences would be expected to result in better suppression, Dag aim was to find a different pulsed field gradient sequenc
when the suppression is already very good, further improvi® rephase more than two wanted pathways, and thus enhar
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900, 1809, 909, 180° 90°, 180y pressed. The resonances in the 2D spectrum have maxin
. I " intensity and pure absorption phase, because 4 wanted pa
acquisition . .
I('H) 12 ty/2 Al d ways of P-type are balanced by the 4 remaining N-type wante
l

©
pathways. The notions P-type and N-type refer to the cohe

ence order of the carbons beirgdl or —1, respectively, since

s the proton chemical shifts of the HQQC prevailingtinare
s(13¢) l ‘ rephased by ar-pulse. Viewed as composite coherence ordel
carbon coherence order is weighted /) ~ 0.25, and P-
and N-type signals are indicated by the numbe&25 and
B - —0.25, respectively12, 15.
+2 \
+1 TABLE 1
pl o \ Improved Gradient Pulse Sequences
-t \—A—% ’ \ Composite coherence orders in given free precession period:
-2 Pathway
3 ‘ ’ number 1 2 3 4 5 6
) 1 1 -0.75 325 275 075 -1
+ 2 -1 1.25 325  -275 075 -1
pS o _{ V1 3 1 -075  -275 325 075 -1
a \ Al 4 -1 1.25 —-2.75 3.25 075 -1
5 1 -1.25 275  —3.25 125 -1
FIG. 3. (A) Pulse sequence for 2D heteronuclear quadruple quantum g -1 0.75 2.75 -3.25 1.25 -1
NMR spectroscopy. (B) Pathways to be selected in our demonstration exper- 7 1 ~1.25 ~3.25 2.75 1.25 -1
iment. 8 -1 0.75 -3.25 2.75 125 -1
9 1 -1 0 0 1 -1
the signal-to-noise ratio. In particular, we wanted to rephasel0 -1 1 0 0 1 -1
both P- and N-type signals simultaneously so that pure- phaséf1 11 _i i ‘1 1 _1
spectra can be obtained in a single sci®).( 13 1 .1 > 5 1 .1
All detectable coherence transfer pathways that might beqg -1 1 2 2 1 -1
excited with a typical protein sample during this HQQC ex- 15 1 -1 3 -3 1 -1
periment are listed in Table 1. It is assumed that heteronucleas®é -1 1 3 -3 1 -1
coherences of CH, CH and CH groups and homonuclear 1’ oot -1 L L -1
-1 1 -1 1 1 -1
proton coherences of orders upa (for hydrogens notbound 74 1 1 5 > 1 _1
to *°C) are created. Pathways induced by possible imperfecoq -1 1 9 2 1 1
tions of the RF pulses are not taken into account. Each row in21 1 -1 -3 3 1 -1
Table | is a vector of six components, representing a certain22 -1 1 -3 3 1 -1
coherence transfer pathway. Thié component of this vector Lo -0 225 —L75 075 1
: . ; -1 1.25 225  -1.75 075 -1
(intherth cqlgmn of Table 1) is the co.mposne co'herence order ¢ 1 —0.75 _1.75 595 075 -1
of the specified pathway prevailing in thiéh period of free o5 1 1.25 ~1.75 225 075 -1
precession2, 15. Each pathway ends with a composite co- 27 1 -1.25 1.75 —-2.25 1.25 -1
herence order of 1, because quadrature detection is applied to 28 -1 0.75 175 -225 125 -1
the protons. The first 8 vectors of Table 1 represent the 82° 11 _135 ‘3'55 135 135 _i
pgthways of the HQQC experiment that contribute to the CH 5, 1 _8:72 - 1'.255 _0.'7: 0.'755 .1
signals. Apart from these 8 wanted pathways, there are 343, -1 1.25 125  —0.75 075 -1
unwanted ones originating from carbon—proton correlations of33 1 -0.75 -0.75 1.25 075 -1
multiplicities other than 3, or from homonuclear proton corre- 34 -1 1.25 —-0.75 1.25 075 -1
lations. 35 1 -1.25 075  —1.25 125 -1
All 34 urjwanted pthwgys must be properly suppressed forgg 711 _(1);2 _ﬁ 27; 710'.2755 112255 :1
a proper signal selection in this HQQC experiment, regardless;g -1 0.75 ~1.25 0.75 125 -1
of whether phase cycles or pulsed field gradients are used. 39 1 -0.75 0.25 0.25 075 -1
In an HQQC experiment where the signal selection is done40 -1 1.25 0.25 0.25 075 -1
by a phase cycle of 24 steps, all 8 wanted pathways can indeed: -1 -025 ~025 125 -1
-1 0.75 -0.25 -0.25 125 -1

be retained, and all 34 unwanted pathways can also be sup-
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TABLE 2
Improved Gradient Pulse Sequences

Dimensions
Wanted Periods of Refocused unwanted
pathways free precession Sel. Sup. Free pathways Optimal gradient pulses Penalty
All (1-8) all (1-6) 4 0 2 All (9-42) — —
Any 7 all (1-6) 4 0 2 All (9-42) — —
Any 6 all (1-6) 4 0 2 All (9-42) — —
Any 5 all (1-6) 4 0 2 All (9-42) — —
1-4 all (1-6) 3 1 2 15-18, 23-26, 31, 32 (29.0, 29.0, 34.8, 3431.8,-1.4) 0.015
5-8 all (1-6) 3 1 2 19-22, 27-30, 33, 34 (30.5, 30.5, 36.0, 3680, —35.6) 0.018
1,2,5,6 all (1-6) 3 1 2 15, 16 (10.2, 10.2, 0.7, 24.9, 35:86.8) 0.014
1,2, 4-6 3 1 1 15, 16 (11.6, 11.6, 0.0, 24.2, 35:86.8) 0.014
3-6 2 1 1 15, 16 (0.0, 0.0, 5.6, 29.6, 35:136.8) 0.014
— 4-6 2 1 0 15, 16 (0.0, 0.0, 0.0, 20.0, 20-640.0) 0.017
1,5 all (1-6) 2 2 2 15 3.5, 15.1, 1.5, 19.8, 36.5;37.0) 0.016
1, 2,4-6 2 2 1 15 0.5, 18.0, 0.0, 18.3, 36.3;37.1) 0.016
— 2,4-6 2 2 0 15 (0.0, 18.0, 0.0, 18.0, 36-036.0) 0.016
1 all (1-6) 1 3 2 — (15.3, 1.2, 21.4, 7.2,37.2, 36.4) 0.017
2,4-6 1 3 0 — (0.0,-28.0, 0.0, 31.8, 36.6:-38.9) 0.025
— 3-6 1 2 1 2 (0.0, 0.0, 28.0, 10.6,40.0, 33.5) 0.017

If the goal of selecting all 8 wanted pathways and suppreB-type pathways, and must therefore be rephased (column 4
sing all 34 unwanted ones could be achieved with pulsed fieldble 2). Pathways f. . . 18} code for homonuclear proton
gradients, the HQQC experiment could be done in a single seaherence, whose signals should show up as axial peaks in t
and would yield a pure-phase spectrum. However, rephassmectrum and can be suppressed by a two-step phase cycle.
the 8 vectors of Table 1 necessarily also rephases all @phased unwanted pathways3{2..26, 31, 32}code for
unwanted pathways, meaning that pulsed field gradients cansighals from CH and CHgroups. The suppression of these
achieve the same results as phase cycling in this case. In oqgegiks is essential for the selection of Gioups in the HQQC
to select signals from the GHyroups, it is therefore necessaryexperiment, which would otherwise require a further six-stej
to select fewer wanted pathways to allow a suppressive syiirase cycle. Similar results are obtained when trying to sele
space to arise. Various choices for the HQQC experiment anely N-type pathways (see line 6 of Table 2) so this scheme ¢
summarized in Table 2. It can be seen that it is necessarytiging to obtain P- and N-type data with field gradients is nc
halve the number of wanted pathways. These results areirimprovement on an HQQC experiment in which only phase
complete agreement with the discussions in Pak8).(Further, cycling is used.
to obtain a phase-sensitive spectrum, only certain combination®\ second approach to obtain phase-sensitive spectra is
of wanted pathways can be allowed. One possibility is t&pply gradient sequences that rephase P- and N-type pathw:
acquire two datasets by repeating the experiment, the first fimultaneously. In the HQQC experiment, P-type pathways {1
P-type pathways and the second for N-type. The datasets 2arwombine with N-type pathways {5, 6} to give pure absorp-
then be coprocessed to obtain the phase-sensitive specttiom lineshapes. The results of calculations by TRIPLE_GRA
(20). In the HQQC experiment, four of the pathways that codeIENT when pathways {1, 2, 5, 6} are classified as the wante
for CH; signals are P-type (being the first four pathways ianes, and pathways {3, 4, 7, 8,...42} areunwanted, is
Table 1), and the remaining four are N-type. A gradient sehown as line 7 of Table 1l. When all periods of free precessio
guence designed to rephase only P-type pathways must tiegat taken into account, the selective subspace is three-dime
the N-type pathways as unwanted. The results of calculatisisnal and the suppressive subspace is one-dimensional, ¢
with TRIPLE_GRADIENT for this problem (using all periodsactly as in the case when only P- or N-type pathways ar
of free precession) are summarized in line 5 of Table 2. If fowvanted (lines 5 and 6 of Table 2). However, only 2 of the 3¢
pathways coding for Ckisignals are classified as wanted, theanwanted pathways are in the selective subspace, and w
dimensionality of the selective subspace reduces from 4 totBerefore necessarily be rephased. Pathways {15, 16} bo
and a new one-dimensional suppressive subspace arises. tbide for homonuclear (proton) triple quantum coherence ar
therefore possible to calculate a gradient sequence to suppassnot expected to be excited to any great extent in the HQQ
unwanted pathways having a component along this one-dimemxperiment. The corresponding peaks are axial and can |
sional subspace. However, some of the unwanted pathwayssligpressed with a two-step phase cycle. This scheme of pa
within the selective subspace spanned by the four wantedy selection seems to be a definite improvement: the exte
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sive phase cycle is no longer needed, and the spectra camiib the gradient pulses. This phase cycle also suppresses f
acquired in the phase-sensitive mode. However, only half efiwanted pathways {15, 16}, which are rephased by some ¢
the CH,-group pathways are detected, so the signal intensitytie gradient sequences.
only half of that obtained from the phase-cycled HQQC ex- To compare the intensities of the signals, 1D spectra wel
periment. When all periods of free precession are taken irdoquired with the RF pulse sequence of Fig. 3. The spectra
account, the solution calculated by TRIPLE_GRADIENT sefsSig. 4 were obtained from experiments in which gradien
a gradient pulse in every interval of the RF sequence. Asquences corresponding to the three shown arrowed in Tal
indicated in Table 11, it is actually possible to obtain the san are applied in conjunction with a two-step phase cycle a
pathway selection with fewer gradient pulses: three pulsekescribed above. Figure 4C shows the signals when pathwa
applied in the last three periods of free precession, are suffi; 2, 5, 6} are rephased. The signals in Fig. 4B are from
cient for the signal selection. If the first of these gradients mathways {1, 5}, and those in Fig. 4A from pathways {1, 2}.
switched in the evolution period of the HQQC experiment, @he intensities reflect the number of rephased pathways. D
pure absorption lineshape can be obtained in a single scarspite the fact that the signals are less intense than in the phe
It is possible to prevent the rephasing of any undesir@gcled experiment, the spectra are of a higher quality and ha
pathway by reducing the number of wanted pathways evanbetter signal-to-noise ratio. It should be noted that signa
further. If the P-type pathway {1} and the complementargubtracted in the phase-cycle experiment have an intensity 1
N-type pathway {5} are the two wanted pathways, only thémes greater than do the signals of interest, and subtractic
unwanted pathway {15} will be rephased in addition (see linerrors may cause a high residual noise. In experiments usil
8 of Table Il). Line 9 of Table Il shows the case of a singlgradients, signals that are further suppressed by the two-st
wanted pathway, e.g., {1}; TRIPLE_GRADIENT has calcuphase cycle are much reduced in intensity.
lated gradient sequences to suppress all other pathways. One
extra pathway amongst the 41 undesired ones, namely pathway 5. DISCUSSION
{2}, is rephased together with the wanted one if gradients are
used in the last four free precession periods of the HQQCGradient selection of coherence transfer pathways must me
experiment. Pathway {2} is degenerate with the wanted patbeveral practical requirements to be useful for routine NMF
way with regard to these periods, but being rephased causespectroscopy. Most importantly, the gradient sequences thel
problem because it is one of the eight Cgtoup pathways. selves should guarantee that the actual NMR experiment is tl
The signal intensity consequently doubles. one required, in the sense of ensuring the capture of the want
Optimal gradient sequences for different pathway selectiogsignals and the simultaneous suppression of the unwant
are presented in Table 2. The calculations were performed @mes. This should be done without deleterious consequenc
the basis that all gradient pulses are assumed to have a reath as a loss in signal-to-noise ratio caused by an inability 1
angular time profile and a duration of 1 ms. All unwantedephase some of the wanted pathways. Further, the gradie
pathways were given the same penalty function (ives 1 in  sequences are best chosen so that it is easy to obtain pure-pt
Eq. [3.1]). The penalties in Table 2 are the value of the penakipectra in the indirect dimensions without introducing artifacts
function evaluated for each solution. For the pathway selectidhe ability to suppress selected strong resonances with sf
shown arrowed in the seventh row of Table 2, the penalty d¢fally tuned gradient sequences is of similar importance an
0.017, for example. According to the calculation, 36 unwantexdfers the possibility of avoiding the strorig noise that tends
pathways are attenuated by the indicated gradient sequencetandccur with phase cycling. The TRIPLE_GRADIENT pro-
the average residual of the suppressed pathway0i®005. gram is designed to offer facilities to match these criteria a
The output from TRIPLE_GRADIENT lists the residual amfully as possible, and is specifically helpful for trying to design
plitudes of all unwanted pathways. gradient sequences to suppress many unwanted pathways wi
We used the gradient sequences shown arrowed in Tablsidultaneously rephasing wanted pathways to obtain pur
for HQQC experiments at 290K on a sample of cyclosporin phase spectra. The number and kind of pathways to be selec
in perdeuterated dimethyl sulfoxide (DMSQO). This cyclic pepar suppressed are chosen by the spectroscopist, and TRIP
tide has 16 conformations in DMSO, of which 8 are signifi- GRADIENT then determines whether or not any appropriat
cantly populated, so 8 24 methyl groups should appeargradient sequences exist. The program can also be used ite
counting all of the groups in the amino-acid side chains andftively, as described in the Results section, where an optim
methylated peptide bonds. The sample was not isotopicadlgswer to particularly difficult problems can be found by
labeled, so the unwanted pathways from homonuclear protaunccessively trading off phased and dephased pathways. F
coherence (pathways9{ .. 22} in Table 1) are a hundred practical applications it should be the ratio of the field gradient
times stronger than the wanted pathways because of the liwat is kept as the main result. The maximal strength of th
natural abundance dfC. To facilitate a complete suppressiorargest gradient in the calculated sequence should then |
of these pathways, a 2-step phase cycle on the fi&tRF chosen so that experimental problems such as eddy currel
pulse and on the receiver is used in all experiments togetlzerd gradient nonlinearities are minimized. In cases where tt
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FIG. 4. Observed spectra. Upper row: 1D HQQC spectra of cyclosporin in DMSO solution at 290 K. Only the region compridingetieyl groups is
shown. Middle row: selected pathways used for generating the spectra above. Lower row: gradient sequences used for pathway selection. Thetmathw
middle and right columns yield pure-phase data.

calculated gradient sequence along all three gradient axes isrfiees contributions from different pathways explicitly, and
same, which is true for most of the cases we have calculatedeseh can be weighted individually, neither of which was the
far, we recommend the application of the gradient sequencecase with the old. For the HQQC sequence used as an exam
the magic angle, when a strong solvent signal is present. Thisthis paper, the new program allowed us to select sever
avoids artifacts arising from local dipolar demagnetizatiocoherence transfer pathways at the same time, while retainil
fields 32-39. a pure-phase spectrum. We expect TRIPLE_GRADIENT (¢
The algorithm described in this paper is quite different fromive experienced spectroscopists the chance to reconsider
its forerunner, which reformulated the minimization procedui@plication of pulsed field gradients in many commonly use
as an eigenvalue problem. This had the undesirable conpalse sequences and to obtain spectra of optimal signal-t
guence of dominantly suppressing pathways that were easytise ratio and phase properties.
suppress, and failing to suppress adequately those that were
less easy to suppress. The new program concentrates its efforts APPENDIX Al
more evenly. Indeed, it should be noted that the example
chosen in the Results section could be solved only with the new
program, which explores more thoroughly the space of wantedA major difference between the present and earlier wor
and unwanted coherence pathways. The new program midi2] is the use of envelope functions to describe the gener

Approximations to Envelope Functions
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decay of the functions sinc and Zv)/v. The sincy) function ; —
is the easier to deal with because the envelope away from the
central maximum has an exactly known form, namel|1/  1©
This diverges agv| — 0, grossly misrepresenting the true
envelope in this region. It is therefore necessary to find a
function that properly represents the sinc function near the
origin and also osculates with|{/at some suitable blend point

(we usev = m, though the precise value is not critical). It is
desirable that the second derivative of the envelope function be
everywhere smooth, because of its important role in the min-
imization procedure, and we therefore decided that all deriva-
tives up to and including the sixth should be continuous. There , .|
iS no unique solution to this problem, and we chose to use a
splined polynomial because the coefficients of such approxi-
mants are easily computed with a pocket calculator, and they
have computationally simple derivatives. The exact method of
calculating such polynomials has already been described else-
where in a different contexg).

The sinc function is even, and its envelope, sincenv, is
consequently also symmetric about the origin, which might
lead one to think that a polynomial approximant about the
origin must also be even. We did calculate several such ap-0-0
proximants, but it turned out to be better to make one of mixed
parity and to reflect it at the origin, because this leads to fewer
numerical problems and to smaller higher derivatives between
the blend points. Indeed, we even chose to use an approximant |
that actually falls slightly below the central peak of the sinc
function for the same reasons, though there is no difficulty -ss 0o %0
flhdlng solutions that_ ar? never below the true er,WEIO_pe (Se?—IG. 5. The sincenv function. The envelope over the sinc function repre
Fig. 5). In our application, this level of approximation tGenting residual signal amplitudes in tAedirection.
sincenv is more than adequate.

We treat the envelope ofJ2(v)/v in much the same way,
except that Bessenv cannot easily be computed to the saaperoximations Bessenv and sincenv were deliberately calc
degree of accuracy as sincenv. The reason for this is simfdyed with the smoothness of their second derivatives in minc
that we do not have an accurate analytic form for the envelopelt is a basic and useful property of a stationary point in any
in the region of interest. The asymptotic form is normally givenumber of dimensions that the slope of the function bein
asm/2v-*, but this underestimates peaks near to the origin lopnsidered is zero. Minima are a special class of stationa
a few percent. However, this level of accuracy is also mopmint having the additional property that the local curvature i
than adequate. The splined polynomial that we use is nowherreconditionally positive with respect to any small changes i
less than 2,(v)/v and osculates with/2v>? atv = 37/2 (see any of the free parameters. This means that the matrix ¢
Fig. 6). The position of this blend point is also not critical, andecond derivatives (referred to here as the Hessian matrix) c
it was chosen on the basis of well-controlled higher derivativég expected to be positive definite at the minimum that we al
of the resulting polynomial. seeking. The Hessian matrix also gives us the possibility c

identifying other types of stationary points, i.e., saddle point
and maxima, though, importantly, it cannot distinguish a loca

T
—

APPENDIX A2 from a global minimum.
In the method of Raphson and Newton, which can be cor
The Method of Minimization sidered for most practical purposes to be the most efficiel

means of finding the zero-crossing point of a (scalar) functio
It is fortunate that in our method the total penalty function tof a single variable, an improved estimate of the solution, sa
be minimized is very smooth and has a known analytic form!, is found by substituting iteratively the current best estimat
The first and second derivatives necessary for an efficiesft the solution, saya, into the assignmenta’ < a —
minimization based on the method of Raphson and Newton §rie’ (a)] “*f(a), wheref’(a) is the first derivative off with
also smooth and calculable without approximation: indeed, thespect to its argument at(27). This method applies without
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modification to vector functions of an arbitrary number of
parameters, so long a$ [] " is taken to mean when necessary
a generalized matrix inversX, 22, 24-2psincef ' may be a
nonsquare matrix. In the present application, all that we need to
do is to replace by our free parametets, t", t* arranged in

a linear (vector-like) array, and replatey the gradient of the
penalty function, i.e.V,(N + P), which we call the Jacobian
matrix. The derivative functiori’ in the method of Raphson
and Newton becomes the curvature, i.e., the Hessian matrix of
second derivatives of the combined penalty function, so the
iteration becomes

t'<—t—[VZN+ P)] V(N + P). [A2.1]

This iteration achieves quadratic (i.e., rather fast) convergence
toward any stationary point of ellipsoidal geometry, as as-
sumed implicitly in its derivation because of the use of second
derivatives. Slower convergence than mightvedl be ex-
pected is sometimes observed. The reason for this is that in
free-parameter spaces of higher dimension, the instrumental
penalty function and the NMR penalty function combine to

FIG. 7. The instrumental penalty function. This function rises smoothly to

10 7] infinity at the maximum achievable field gradient in a given direction. It is

0 ' 20 ' 30

represented figuratively with the sincenv function, though in fact they ar
specified in different spaces displayed with coincident origins.

form a sum whose minima are curved so that they can have
shape rather like a banana, and are often even more sinuous
such a situation, even the accurate knowledge that our progre
has of the local curvature is clearly insufficient to prescribe
rapid path to the minimum. It would be natural to ask whethe
a minimization taking into account third or higher derivatives
might perform better. We have not tried this for two reasons
the first is that the number of derivatives of even a scals
function rises as the number of parameters raised to the orc
of the derivatives required, meaning a potentially enormou
extra computational cost per iteration; the second is the
schemes using higher derivatives have a tendency to becol
unstable, and are thus doubly unattractive.

It is not necessary to evaluate the inverse of the Hessie
matrix explicitly, since only its product with the Jacobian is
required, and this lesser calculation is performed reliably b
the elegant and widely accepted conjugate gradient alg
rithm (20).

The curvature of the instrumental penalty functidh, is
positive everywhere inside the bounding divergences (see Fi
7), which causes no problems. However, the NMR penalt

function N, being a sum of envelope functions crossing in
FIG. 6. The Bessenv function. The approximate envelope over tH@any different directions, ha§ a Uf'“C_Iue maximum at the 0”9”
2J,(v)/v function representing residual signal amplitudes inXhéplane. of wavevector space, and an indefinite number of saddle point
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If no action were taken to avoid it, these could all act amplied degrees of freedom allow the gradient pulse sequen
attractors if Eq. [A2.1] were used as it stands. To some extettd,be adjusted or trimmed to make fuller use of the capabilitie
the method used to prevent this from happening is arbitraryef the equipment. As far as the minimization procedure i
one might even say a matter of taste. The method that we ha@eacerned, it makes little difference whether a given profile
used, with success, is to find the most negative diagonal delongs to the suppressive or to the free set, and they &
ment of the Hessian matrix, and then if it is actually negativepnsequently grouped together in the form represented here
to subtract its value from the entire diagonal. This is the sarBe We thus write the sequence of field gradient pulses in th
as adding a positive multiple of the identity matrix and has th&-direction as

effect of distorting the curvature just sufficiently to prevent any

attraction to the nonminimal stationary point. In this way, the gt = s,th [A3.1]
algorithm always moves in the downhill direction. It has turned oo '

out to be necessary in practice to limit the amount by which the

diagonal of the Hessian may be loaded, to prevent numerical ) )
overflows in the conjugate gradient routine. In cases where tiethis equation, thé are the free parameters of our analysis.

saddle point curvature is more extreme, the algorithm simpfjich are varied independently in order to find the minimum o
steps a fixed distance along the vector represented by tg overall penalty function. There is some freedom of inter
Jacobian. It is rare for this action to occur more than once piEtation of notation here. For example, in the minimizatior
minimization. routine, it makes sense to think of the parametéys”, t* as

It can happen that the curvature represented by the Hesdi§i'9 arranged in alinear (vector-like) array, whereas they a
is so small that the calculated change in the free parametBIre correctly interpreted as a set of three independent s
would place them outside of the allowed region. To preveftences of identical length, and thus might appear to fit mor
this from happening, the length of the vector representing tRaturally into matrix ngtatlon. However, these mterpretatlo'n;
change is modified by a formula based on the hyperbofit® of only secondary importance, and to prevent the possib

tangent. This has the property of leaving small changes unily. of any confusion, we have retained a fuI.I ir}dex notation
tered, since the function has unit slope at the origin, but limité1€rever necessary. The set of allowed profif&ss unprob-
large changes to some preset value. lematic, and it need be noted only that it is a fixed quantity

Though the mathematical properties of the total penarlé}Fder the minimization and is the same for all three gradier
function per se are unexceptionable, the differences betweerfi#f&ctions; it also always appears in the equations in a positic

extremal slopes and curvatures are rather large, and it W4Ere it can be represented naturally as a matrix.

necessary to be more than usually careful about the computal "€ Minimization is performed with respect to changes ir

tional implementation to prevent floating-point overflows if€ free parameters, whereas the physical problem deper
the conjugate gradient routine. directly on the individual field-gradient pulses. The two are

coupled by the derivatives:

APPENDIX A3 A
99

The Construction of the Gradient Pulse Sequences ath T

[A3.2]

We follow earlier work (2) and create field-gradient pulse

sequences as a linear superposition of allowed profiles V&'P'.Ch enter into the equatlo'ns via the chgln rule of the differ
“vectors,” represented here 8sAllowed profiles are defined ential calculus. All other derivatives gfvanish, whether they

as having the property of not reducing the amplitude of signeﬁg mixed or of higher order.

arising from wanted coherence transfer pathways. It often

happens that the number of such vectors exceeds the dimen- APPENDIX A4

sionality of the space that they span. In the earlier work, this

degeneracy was removed by using a Gram-Schmidt algorithm  Minimizing the Instrumental Penalty Function

to create a minimal "suppressive” set O.f orthogpnal VeCtorS'The Jacobian and Hessian matrices of the instrumental pe
We also make use of the Gram-Schmidt algorithm, but Wy function are computed in a stepwise fashion using th

nor mally keep all of the ex'tra \{ectors. These have th? pmpea%in rule. We calculate the first derivative with respect to the
(within the level of approximation used throughout this papeE)rI

. " ange in integrated strength of an individual field gradien
of affecting none of the specified coherence transfer pathways 9 9 9 9
P N Ulse as
wanted or unwanted, and are hence called “free.” In the earller
work, their inclusion in the analysis would have served no ¥
purpose, but once the instrumental limit on the strength of any oP  cg'g

given gradient pulse is taken into account, then the extra g (- 9d)% [A4.1]
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It will be noticed immediately that the sum in Eq. [3.2] hasvith strictly analogous equations for tive andZ-gradients. If
vanished. This is because thdnere refers to a single gradientmatrix notation had been used, these three equations wot
pulse, and only the term under the summation with the sarave been writtetk = gpy, wherek = (\k,, ky, Kk,).
indices survives the differentiation, the others being indepen-The cylindrical symmetry of the specimen implies a cylin-
dent variables. The second derivative with respect to the sadreal symmetry in its Fourier transform as well, so long as i
integrated field gradient pulse strength is then given by  remains properly centered, as assumed here, and this me:
that the results cannot depend on azimuthal angle, but only «

92p ca? 842 radius:

SN2 (A2 : nzt A4209 gz 3- [A4.2]

g (B°—-9g9° ©O°—9)

oK = (KE+ kP2 [AS.2]

It is now possible to see whi has the form that it does, for
if g< 0, thend’P/ag” = c, the chosen curvature at the originThe derivatives of this radius are needed for the chain rule use
The terms of the Jacobian matrix, here labeled explicitly, ate calculate terms for the minimization and are given by
calculated using the chain rule and Eq. [A3.2]:
aukr ukx d aukr uky

9P agr 9P P Tk Tk
a= E i};ﬁz E . [A4.3] Ky K auky oK
at; ati" 90, a9;

r r

[A5.3]

As mentioned in the main body of the paper, we make an NMI
penalty function to be minimized formed as the sum of ar
approximate model of the likely amplitudes of all of the un-
wanted NMR signals, quoted again here in a fuller form:

The Hessian terms are also calculated in a similar way:

d°P agragr 9P a°P
st~ S ot kg S S jgee (A4
e L e ' ' N = > w,Bessenyk,R)sinceny.k,L). [A5.4]

u
This formula may appear simpler than might be expected, and
indeed is so. The reason is thatbeing linear, has no secondThe fact that we use envelope functions rather than the ides

derivatives, so that the additional terms generated by taking iked product in Eq. [2.2] has important consequences. The fir

derivative of the product in Eq. [A4.3] disappear. is that the overall penalty function is extremely smooth, and w
are not trapped by a multitude of zeroes as would happen if E

APPENDIX A5 [2.2] were used directly. The second is that the envelop

functions are still thought to apply more or less accurately i

Minimizing the Unwanted NMR Signals the sample should depart from ideality in any way, such a

. . . .. being miscentered or not exactly cylindrical.
We follow the previously published geometrical description ha terms in the Jacobian matrix derived from Eq. [A5.4]

(]:2)’ in ,Whi(?h both the sequence of field Qfadie”t pulses ins"i‘)lit because of the cylindrical symmetry into ones along th
given direction and the matching composite coherence ordefs,iq
are represented as “vectors.” The interaction between them'is

then represented by the inner product between the two vectors. N

In our case, since we are considering up to three gradlgnt 22 =3 S w, BessenykR)
directions, our gradients themselves become a vector function, ~ dti  “* <

and a matrix might be a more appropriate representation for

them, the more especially since the result is actually a d sincenyv)
wavevector. However, the derivatives do not follow a unified X YPrSn IV v=ukal * [AS.5]
structure since they are related to the shape of the specimen,
which is assumed to be a cylinder aligned along Zhaxis. .

. . : ._and ones along th¥- and Y-axis,
This fact largely abolishes any advantage of matrix notation,
and we have consequently not adopted it here. We thus write

- . i i N k
the X cpmponent of the wave-vector (which appertains to the =SS wypasS, LAl
X-gradients) as ot o oK
_ LA X — X d Bessen )
ukx - Vpu g Y 2 pru 2 Sl'ltl [A51] X 7(’\/) v=ukiR Slncen\(ukZL). [A56]
r |

av
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Only the equation for thX-axis is given, because the equation
for the Y-axis follows the same form.

The split caused by cylindrical symmetry has an increased
effect when considering the terms of the Hessian matrix. W&

have first the pure second derivative along Zhaxis: Bessenv
a°N c
SZati = 2 2 2 W, BessenikR)
atfatf = = 4
? sincenyv) f
a? sincenyv F
X 'szrupsusrisstzT v=k-  [AB.7] g

X
There is then the mixed second derivative, when one axds isg
and the other is eitheX or Y:

g
a°N K .
R 2 ourx i
Gt,x@tlz E 2 z Wuy pruSrl ukr R J J
u r S
L
o Bessenw)
X [ PaSsL N
d sincenyv) r,s
X T oy | vk [A5.8] p
p

Again, the equation referring thé-axis is not given, since it R
follows the same form by direct substitution. The pure secompd
derivative with respect to th¥ is given by

, oK
0°N
atxatx = E E E Wu'yzprupsusrissz
i ] u r S S
sinc
sincenv

{uk§ R 92 Bessenw)

2 2
K v -

K70 Besseniv)
K3 v

v=uor} SINCENV(K,L), t

Q

[A5.9]

and the equation for the pure secovidierivative follows by
symmetry. Finally, there is the mixed second derivative with

respect to theX-axis andY-axis: w
9°N WKk e
W = 2 2 E Wu‘yzprupsusrissj sz R
| ] u r s u r
X, Y
92 Bessen
av v k,
1 9 Bessenw) )
T v |vewR sinceny k,L). o
ut™r
g

[A5.10]

APPENDIX A6: NOMENCLATURE

an axis, i.e.X, YorZ
a magnetic field
an approximation to the envelope of the functio
23, (V)Iv
the curvature at the origin of the instrumental pen-
alty function
the time profile of a pulsed field gradient
the number of free precession periods
an array of pulsed field-gradient strengths represen
ing a pulse sequence
an array of fieldX-gradient pulse strengths; simi-
larly g*, g
the maximum permitted strength of a gradient
pulse
indices to a free parameter
a Bessel function of the first kind28)
the length of the sample, assumed cylindrical
a penalty function representing unwanted NMR sig-
nals
indices to a pulse within a sequence
a penalty function representing instrumental limita-
tions
an array of composite coherence orders
the radius of the sample, assumed cylindrical
the radial component of a wavevector (i.e., in ¥ye
Y-plane)
the radial component of a wavevector relating to
pathwayu
a set of allowable gradient pulse sequences
the sinof) = sin(v)/v function
an approximation to the envelope of the sinc func
tion
a free parameter
a free parameter varying gradients along Xhaxis;
similarly t¥, t*
time
an index denoting an unwanted coherence transfe
pathway
a general scalar argument
a weighting factor for a given unwanted coherence
transfer pathway
the component along thé-direction of a wavevec-
tor relating to pathway; similarly k,, Kk,
the X- and Y-axes (across the Zeeman field)
the Z-axis (along the Zeeman field)
the component of a wavevector along thalirec-
tion
a gyromagnetic ratio (usually of the proton)
an approximation to the expected amplitude of ar
NMR signal
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