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We describe a new and powerful computer program called
RIPLE_GRADIENT which calculates optimized pulsed field
radient sequences for specific coherence pathway selection or
ejection. Sequences can be computed for gradient coils acting
long one, two, or three perpendicular axes. The program is based
n the computational minimization of a penalty function formed
rom the summed amplitudes of the unwanted signals. The un-
erlying mathematical analysis makes use of a vectorial represen-
ation of the way in which a gradient sequence suppresses different
ignals. It is argued that experiments using well-calculated gradi-
nt sequences are quicker and generally perform better than those
sing extensive phase cycling, especially when suppressing ex-
remely strong solvent signals, and it is shown that in many cases
radient experiments of optimal signal-to-noise ratio can be per-
ormed. These claims are illustrated by spectra obtained from an
QQC experiment. © 1999 Academic Press

Key Words: pulsed field gradients; pathway selection; signal
uppression; water suppression; HMQ NMR spectroscopy.

1. INTRODUCTION

A high-resolution NMR experiment is defined by a seque
f radiofrequency (RF) pulses and a procedure for select
equired set of coherence transfer pathways. Generally s
ng, an RF pulse sequence excites an enormous numb
oherence transfer pathways. Some of these pathways le
he signals of interest (“wanted pathways”), which we wo
ope to be able to detect without interference. Other (“unw
d”) pathways must be suppressed so that they do not co
ate the spectrum. Phase cycling (1–3) is the most commonl
pplied approach for this purpose, but it has been sh
ecently that multidimensional NMR spectroscopy can
ake use of pulsed field gradients for pathway selection4–
, 37). Gradients induce a position-dependent distributio
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he spin isochromates in proportion to the quantum coher
rder. We call this effect “dephasing,” and its reversa
eferred to as “rephasing.” Gradient selection can be prefe
o phase cycling on account of advantages including red
easurement times, reduction oft 1 noise (7), use of the ful

ange of the analog to digital converter, and improved so
uppression (8). To find optimal gradient sequences is, ho
ver, not intuitively easy, especially for the relatively long
ulse sequences of multidimensional NMR spectroscopy
In most cases nowadays, a gradient sequence is prim

uned to rephase the wanted coherence transfer pathway
here is no guarantee that the unwanted signals are pro
uppressed (9). Special complications arise when phase-se
ive spectra are required, because it is then necessary to
imultaneously P- and N-type pathways. This is not a prob
hen phase cycling is applied. However, if gradients are u

t is often difficult to find gradient sequences that rephase
wo types of pathway simultaneously and yet still sufficie
uppress the unwanted ones (10, 11).
Mitschanget al. addressed these conceptual problems

ently by introducing a geometric description of the calcula
f gradient sequences (12). In principle, field gradients can b
pplied with arbitrary amplitude in any free precession pe
ithin the RF pulse sequence, forming an infinite multitud
otential gradient sequences for the experiment. The geom

ormalism allows us to determine a sequence of pulsed
radients that can rephase as many wanted pathways a
ible and also strongly dephase the unwanted pathways
ormalism was originally developed under the assumption
eld gradients are applied only along a single spatial direc
normally parallel to the Zeeman field, i.e., a “Z-gradient”)
12). An extension to the case where field gradients ca
pplied in three mutually orthogonal directions (“X-, Y-, and
-gradients”) is discussed in Part I (13). It has been shown th
radient sequences that rephase wanted pathways but st
ephase unwanted ones can be found in favorable cas
olving an eigenvalue problem (12) whose solution tends
pecify gradient sequences that suppress the stronge
anted pathways (i.e., with the largest coherence orders

d.
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11NMR SIGNAL SELECTION: II. GRADIENT PULSE SEQUENCE DESIGN
ay fail to suppress weaker ones. It is difficult to steer
olution of the eigenvalue problem toward gradient seque
hat suppress efficiently the most important unwanted p
ays. In order to be able to solve the general case routinel

eliably, a numerical procedure is clearly required.
In this paper we present an algorithm built on the geo

ical nature of the earlier work (12, 13). The calculation of a
ptimal gradient sequence by solving an eigenvalue probl
bandoned in favor of a direct computational minimizatio
realistic estimator of the residual magnitudes of the unwa

ignals. The maximum possible amplitude of the field grad
s also taken into account, and different gradient pulses
llowed different durations in order to tailor the gradient
uence realistically for the particular NMR experiment. T
orresponding computer program is called “TRIPLE_GRA
NT.” It is designed specifically for the optimal implemen

ion and use of field gradients by the experimentalist.
The organization of the paper is as follows: in Section 2

eometric approach to pathway selection of the earlier wo
ummarized, as far as it concerns the present work; in Se
, the algorithm of TRIPLE_GRADIENT is described in t
eneral case when field gradients can be applied along
patial direction; the details of the mathematics are describ
he Appendices; finally, an example in which TRIPLE_GR
IENT is applied to optimize the pathway selection by pu
eld gradients in a1H/13C correlation experiment is discuss
xtensively in Section 4. Measured spectra are also pres
emonstrating the rephasing of several and compleme
anted pathways to obtain phase-sensitive spectra in a
can. Gradients are applied in the evolution period of t
xperiments.

2. GEOMETRICAL ANALYSIS OF
PATHWAY SELECTION

A field gradient exposes a spin system to an inhomoge
agnetic field whose gradient is usually aligned along
therwise homogenous Zeeman field. We assume tha
quipment allows the generation of spatially uniform fi
radients along one or more of the three mutually orthog
irections defined as the conventional laboratoryX-, Y-, and
-axes. As is conventional, we tie our laboratoryZ-axis to the
irection of the Zeeman field. We then define the waveve

k 5 Sk x

k y

k z

D 5 gSp ? gX

p ? gY

p ? gZ
D , [2.1]

hereg is the gyromagnetic ratio of one of the nuclear spe
nvolved in the experiment (12) andp is a vector representin

particular coherence transfer pathway. In the homonu
ase, ther th component ofp is the coherence order prevaili
n the r th period of free precession of the experimen
uestion (15), and in the heteronuclear case this and su
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uent equations retain their validity when a so-called com
te coherence order is used instead (12, 15). gX, gY, andgZ are
ectors that represent sequences of pulsed field gradien
lied along theX-, Y-, and Z-axes, respectively. Ther th
omponentgr

A 5 G r
A* 0

t0r f r(t)dt is the effective strength o
impact” of a field gradient applied along the specifi
irection in ther th period of free precession,G r

A being the
mplitude of the field gradient,t 0r its duration, andf r(t) the

ime profile of the pulse (13). p, gX, gY, andgZ are vector
n Euclidean spaces isomorphic to and modeled byR F,
hereF is the number of periods of free precession of
xperiment in question. The radial component of
avevector isk r 5 (k x

2 1 k y
2) 1/ 2. The sample volum

ffected by a field gradient is taken to be a cylinder of he
and radiusR with its center at the origin of the coordina

ystem and its axis of cylindrical symmetry along the Z
an field.
The reduction in amplitude of a signal when field gradie

re applied (13) is given by

s~k ! 5 s~0!
2J1~k rR!

k rR

sin~k zL!

k zL
, [2.2]

hereJ1( z ) is the Bessel function of first kind and first ord
14). Strictly speaking, Eq. [2.2] applies only when the e
ation profile of the RF coils is completely uniform within t
ample volume, but we do not address further in this work
mplied approximation when this assumption fails.

The ultimate attenuation of a pathway depends on the v
rgument,k, which appears as the scalar componentsk r andk z

n Eq. [2.2].R andL are constants, butk itself depends on th
nner product, Eq. [2.1], which is what makes it possible
nterprete the mechanism of pathway selection geometric

pathway is rephased (i.e., not perturbed) ifk 5 0 when field
radients are applied. In this case, the vectorsgX, gY, andgZ

epresenting the sequences of pulsed field gradients ap
long the different directions are orthogonal to the vectp
epresenting the coherence transfer pathway. Fork Þ 0, i.e.,
f one or several of the vectorsgX, gY, andgZ are not orthog
nal top, the pathway is dephased and hence attenuated
ertain extent. Generally speaking, the larger the inner pro
etween the pathway and the sequences of field gradien
reater is the achievable attenuation of the signal becau

he way in which Eq. [2.2] falls off.
The overall vector space,RF, splits naturally and advant

eously into three parts (13). The first is the subspace spann
y the wanted pathways, and is hence called “selective.”
emaining part ofRF is decomposed into two further parts. T
uppressive subspace comprises the components of th
anted pathways outside of the selective subspace, whil

ree subspace is any remaining part ofRF that can be spanne
either by a wanted nor by an unwanted pathway.
The condition that a gradient sequence not perturb
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12 THOMAS ET AL.
anted signals can now be met simply by generating it f
ithin the suppressive and free subspaces, and avoidin
elective one. The suppression of unwanted pathways de
ntirely on components from the suppressive subspace
ny adjustments of the sequence to accommodate instrum

imitations are controlled by admixture of components from
ree subspace. Optimization proceeds by the route of min
ng the sum of the amplitude of all unwanted signals (so
he worst receive the most attention) plus a smooth pe
unction describing instrumental limitations.

3. THE ALGORITHM

A flow-chart diagram of the successive computational s
n TRIPLE_GRADIENT is shown as Fig. 1. The algorith
described in detail in this section and in the appendices)
irectly the geometrical analysis outlined in the prece
ection.
TRIPLE_GRADIENT reads as input a list of all excit

oherence transfer pathways that are considered to be i
ant. Each pathway is coded as an array ofF real number
hich are the respective coherence orders of the spe
athway prevailing in theF free precession periods of t
xperiment. The user must specify which pathways are wa
nd which unwanted. In principle, field gradients may
pplied in any of theF periods of free precession, but this

FIG. 1. Flow chart of the TRIPLE_GRADIENT program. The arrows
enote flow of data.
the
nds
nd
tal

e
z-
t

lty

s

es
g

or-

ed

ed
e

ometimes not desirable, and certain periods are bette
luded, e.g., very short periods or periods in which a
radient might interfere with RF decoupling pulses. TRIP
GRADIENT therefore allows the user to specify which p
ds of free precession to use. The duration of each gra
ulse must also be specified (in milliseconds). This mak
ossible to maximize the overall strength of a gradient
uence, since different gradient pulses can be adapted

iming of the RF pulse sequence. On some spectrometer
ossible to vary the time profiles of the gradient pulses, bu
rogram currently assumes the use of rectangular ones
umber of periods of free precession allowed to conta
radient pulse defines the dimension of the entire space
F when all periods of free precession are allowed) whic

ater decomposed into the three subspaces. The choi
eriods of free precession in which field gradients migh
pplied is therefore a crucial step in the procedure, as w
utlined in Section 4 by several examples. In the subseq
alculations within TRIPLE_GRADIENT, the pathway vect
f the input file are reduced to components correspondin

he user’s choice of periods of free precession.
The next steps are the explicit calculation of the selec

uppressive, and free subspaces by repeated application
ram–Schmidt procedure (16) (see Fig. 2). Specifically, th

elective subspace is generated by applying the Gram–Sc
lgorithm to the set of all wanted pathways. The suppres

ith filled heads denote passage of program control. The arrows with op
w
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13NMR SIGNAL SELECTION: II. GRADIENT PULSE SEQUENCE DESIGN
ubspace is then generated by applying the Gram–Sc
lgorithm both to the selective subspace (now held fixed)

o the unwanted pathways. Finally, a unit matrix (represen
he entire space) is appended to both the selective and su
ive subspaces and the Gram–Schmidt algorithm is app
hird time (both the selective and suppressive subspaces
eing held fixed). Any surviving vectors define the free s
pace. The program issues warning messages for any unw
athways that lie in the selective subspace since they ha
omponent along the suppressive subspace, making it im
ible to find an appropriate gradient sequence. Such unw
athways are excluded from further calculation.
Any gradient sequence that rephases all wanted pathw

epresented by a vector within the suppressive and free
paces (i.e., the entire space excluding the selective space
orrespondingly any vector within this common space co
ponds to a gradient sequence that rephases all wanted
ays. The next computations in TRIPLE_GRADIENT are
alculate the most efficient gradient sequences, i.e., thos
ost effectively minimize the residual signals from unwan
athways. The sequence is represented as a linear comb
f the base vectors of the suppressive and free subspa
btained by the Gram–Schmidt algorithm described ab
hus, the actual free parameters are the linear coeffic

FIG. 2. The vector spaces subjected to the Gram–Schmidt algorithm
et of vectors representing wanted pathways are shown diagrammatica
sually nonsquare matrixW in row 1. This set is fed as input to the Gra
chmidt algorithm, which outputs a usually smaller matrixS representing th
elective subspace in rows 2, 3, and 4. Once calculated,S is held fixed. Then
he set of unwanted pathways is assembled into a matrixU and appended toS
row 2). The combined pair are again fed as input to the Gram–Sc
lgorithm, and the result is the generally nonsquare matrixSR, S being as
efore, andR being the suppressive subspace (row 3). LikeS, R is not allowed

o change once it is calculated. Finally, the unit matrix, representing th
pace, is appended toSRand the entire matrix subjected to the Gram–Sch
lgorithm a third and final time. This timeI is reduced toF, representing an
emaining free subspace (row 4).
idt
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hese are varied independently to minimize a suitable pe
unction representing residual unwanted signals.

The construction of a penalty function starts from Eq. [2
deally, Eq. [2.2] would be a good description of the deca
single unwanted pathway, but in practice neither the req
ent for constant gradients nor that for uniform excitation

he RF pulses is satisfied, and Eq. [2.2] must be regarded
pproximation. Experiments (not presented) have also
rmed that it is not feasible to adjust conditions in orde
ork at a zero-crossing point of Eq. [2.2]. The best strat

herefore, seems to be the simple one of maximizing
rgumentsk r andk z. This works because the envelope of
oscillatory) function sin(v)/v 5 sinc(v) falls as 1/uvu, and the
nvelope of the (oscillatory) function 2J1(v)/v falls approxi-
ately asp/2uvu23/2 (14). Following this reasoning, the atte
ation of a single pathway is monitored by fitting an enve

unction to Eq. [2.2]. The envelope of the sinc function
epresented accurately by a specifically constructed fun
alled sincenv, and the envelope of the function 2J1(v)/v is
pproximated to more than adequate accuracy by a sim
onstructed function, Bessenv. The construction of thes
elope functions is discussed in greater detail in Appendix
he penalty function actually minimized must take into
ount the residual signals of all unwanted pathways, whic
rite as

N 5 O w Bessenv~k rR!sincenv~k zL!. [3.1]

he weightsw can be set by the user and can represen
arious expected amplitudes of different signals, but
qually be set to other values to express varying experim
mphases. As described above, each of the sequences of
eld gradients applied along theX-, Y-, or Z-axes is repre
ented by a linear combination of the base vectors o
uppressive and the free subspace. These linear coeffi
nter as free parameters the penalty function via its argum
(defined in Eq. [2.1]), together with the components al

he suppressive subspace of the unwanted pathways. Eq
3.1] adopts its minimum for the gradient sequences tha
ultaneously rephase all wanted pathways while maxim
ephasing the unwanted ones.
As it stands, the response signal above can be decr
ithout limit by increasing the strengths of the field grad
ulses. Real gradients are limited, however, and it is also
ecessarily desirable to use the maximum values availabl
xample because of fears of nonlinearity, massive eddy
ents, and other possible problems. For this reason, TR
GRADIENT also includes a penalty function that ri
moothly to infinity as each gradient pulse approaches a
cribed limit. This function has the form

P 5 O
r

cĝ4

2~ĝ2 2 g r
2!

, [3.2]

e
s a

dt

ll
t
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14 THOMAS ET AL.
hereĝ is the maximum permitted strength of a gradient pu
ndgr represents the strength of a single gradient pulse ap

n the r th period of free precession.ĝ is calculated as th
ntegral of the time profile of the specified pulse over
uration multiplied by the maximum possible amplitude of
eld gradient. We set the latter to 50 G cm21 for longitudinal
radient pulses, and to 35 G cm21 for the transverse one

hough these values are installation-dependent. The sp
orm of the limiting function is dictated by the requirement t
he curvatures at the origin have uniform controllable value
inimize any perturbation to the normal running of the m
ization routine in this region. The contours of this instrum

al penalty function are isotropic (i.e., circular, spherical,
erspherical, etc.) near the origin ifc is the same for all pulse

n the sequence, but they blend smoothly into a rectan
hape as the instrumental limits are approached (a si
unction has been used before in a different application (29)).
his means that when degrees of freedom exist (i.e., ther

ree subspace), the overall profile of the pulse sequence m
ltered to make maximal use of the instrumental capabili
As with any minimization problem, care must be taken

void the possibility of becoming trapped in a local minim
nd thus failing to find a better solution. Our resolution of
roblem has been to restart the minimization a specified
er of times (usually 16 for a single gradient, and 64 fo

riple-gradient probe) and then to select the best result. It
appens that results are coincident, and the program inc
ode to reject the redundant solutions.
At the end of a run, TRIPLE_GRADIENT provides t

ollowing information. The base vectors of the selective, s
ressive, and free subspaces are listed with an indicati
nwanted pathways that lie in the selective subspace an

herefore not subject to minimization. The limiting strengthsĝ,
re given for the different pulses along all three directions
s G cm21). The best solution of the different trials of min
ization, i.e., the optimal sequences of pulsed field grad

gX, gY, andgZ), along theX-, Y-, andZ-axes is printed ou
he strength (in ms G cm21) and duration (in ms) of eac
ulse, the latter as set by the user, and its calculated amp
in G cm21) are also printed out. Strength and amplitude b
arry a sign to indicate the relative direction of the fi
radients. It may be that in a given solutiongX, gY, andgZ are

dentical apart from scale, as discussed in Part I (13). In this
ase, the application of any of these sequences alone will
ualitatively the same result. To identify these cases, the

ors representing the best solution are shown a second tim
ormalized to unit length, and their inner products are ca

ated. Results near to61 indicate equivalent gradient s
uences. Finally, all unwanted coherence transfer pathwa

isted with their residual amplitudes if the best solution is u
The simultaneous application of two or three identical

uences would be expected to result in better suppressio
hen the suppression is already very good, further impr
,
ed
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to
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ents are generally not forthcoming in practice becaus
onlinear effects not included in the calculations.

4. EXAMPLE AND RESULTS

TRIPLE_GRADIENT calculates optimized gradient
uences for the pathway selection problem specified in its
le. The user defines whether a specific pathway is want
ot and at which positions in the RF pulse sequence a
radient can be applied. It is therefore the user’s task to
equirements appropriate for a well-executed experiment
rux is the distribution of the pathways with respect to
elective and suppressive subspaces. For a given choice
recession periods, the selective and suppressive sub

orm a common space of fixed size, being the space spann
ll pathways. In general, the higher the number of wa
athways, the larger will be the selective space, and the sm

he suppressive subspace. In some cases it may even be
reedom remains, and it may no longer be possible to sup
ome important pathways (see Part I (13)). On the other hand
or a given set of wanted and unwanted pathways, the nu
f unwanted pathways with a component outside the sele
pace depends on the choice of free precession periods,
an be important to make this choice in a way that maxim
he dimension of the suppressive subspace. Clearly, th
ension will be at its largest when all possible free preces
eriods are used. It is, however, generally desirable to sw
s few gradient pulses as possible, particularly for invi
amples, in order to minimize signal loss from translatio
iffusion (31). In this particular case, it is also preferable t

he gradient pulses be applied in neighboring free prece
eriods. Use of TRIPLE_GRADIENT therefore proceeds

wo steps: first, the best set of wanted and unwanted path
s evaluated, usually allowing all periods of free precessio
e used; second, any gradient pulses that are not strict
uired are eliminated. These methods are illustrated fo
ignal selection using the heteronuclear quadruple qua
oherence (HQQC) correlation technique (17, 18, 30). The
ulse sequence of this experiment and the pathways
elected are shown in Fig. 3. The key element of the ex
ent is the generation of HQQC at the beginning oft 1, which

s then typically utilized as a filter for CH3 groups. The stan
ard technique, however, suffers the disadvantage of ne
o fewer than 24 steps of phase cycling to select the3

ignals properly. Signal selection in the HQQC experimen
een treated before by solving an eigenvalue problem: it
ossible to calculate a sequence of pulsed field gradients w
ttenuated all of the unwanted pathways but it rephased

wo of the eight wanted pathways (12). These two pathway
re of the same P-type, so the spectra had to be proces
bsolute values (19). We have used TRIPLE_GRADIENT
eexamine the pathway selection in this HQQC experim
he aim was to find a different pulsed field gradient sequ

o rephase more than two wanted pathways, and thus en
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15NMR SIGNAL SELECTION: II. GRADIENT PULSE SEQUENCE DESIGN
he signal-to-noise ratio. In particular, we wanted to rep
oth P- and N-type signals simultaneously so that pure-p
pectra can be obtained in a single scan (19).
All detectable coherence transfer pathways that migh

xcited with a typical protein sample during this HQQC
eriment are listed in Table 1. It is assumed that heteronu
oherences of CH, CH2, and CH3 groups and homonucle
roton coherences of orders up to63 (for hydrogens not boun

o 13C) are created. Pathways induced by possible impe
ions of the RF pulses are not taken into account. Each ro
able I is a vector of six components, representing a ce
oherence transfer pathway. Ther th component of this vecto
in ther th column of Table 1) is the composite coherence o
f the specified pathway prevailing in ther th period of free
recession (12, 15). Each pathway ends with a composite
erence order of21, because quadrature detection is applie

he protons. The first 8 vectors of Table 1 represent t
athways of the HQQC experiment that contribute to the3

ignals. Apart from these 8 wanted pathways, there ar
nwanted ones originating from carbon–proton correlation
ultiplicities other than 3, or from homonuclear proton co

ations.
All 34 unwanted pathways must be properly suppresse
proper signal selection in this HQQC experiment, regard

f whether phase cycles or pulsed field gradients are use
In an HQQC experiment where the signal selection is d

y a phase cycle of 24 steps, all 8 wanted pathways can in
e retained, and all 34 unwanted pathways can also be

FIG. 3. (A) Pulse sequence for 2D heteronuclear quadruple qua
MR spectroscopy. (B) Pathways to be selected in our demonstration
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ressed. The resonances in the 2D spectrum have ma
ntensity and pure absorption phase, because 4 wanted
ays of P-type are balanced by the 4 remaining N-type wa
athways. The notions P-type and N-type refer to the co
nce order of the carbons being11 or 21, respectively, sinc

he proton chemical shifts of the HQQC prevailing int 1 are
ephased by ap-pulse. Viewed as composite coherence or
arbon coherence order is weighted by (gC/gH) ' 0.25, and P
nd N-type signals are indicated by the numbers10.25 and
0.25, respectively (12, 15).

TABLE 1
Improved Gradient Pulse Sequences

Pathway
number

Composite coherence orders in given free precession pe

1 2 3 4 5 6

1 1 20.75 3.25 22.75 0.75 21
2 21 1.25 3.25 22.75 0.75 21
3 1 20.75 22.75 3.25 0.75 21
4 21 1.25 22.75 3.25 0.75 21
5 1 21.25 2.75 23.25 1.25 21
6 21 0.75 2.75 23.25 1.25 21
7 1 21.25 23.25 2.75 1.25 21
8 21 0.75 23.25 2.75 1.25 21

9 1 21 0 0 1 21
10 21 1 0 0 1 21
11 1 21 1 21 1 21
12 21 1 1 21 1 21
13 1 21 2 22 1 21
14 21 1 2 22 1 21
15 1 21 3 23 1 21
16 21 1 3 23 1 21
17 1 21 21 1 1 21
18 21 1 21 1 1 21
19 1 21 22 2 1 21
20 21 1 22 2 1 21
21 1 21 23 3 1 21
22 21 1 23 3 1 21
23 1 20.75 2.25 21.75 0.75 21
24 21 1.25 2.25 21.75 0.75 21
25 1 20.75 21.75 2.25 0.75 21
26 21 1.25 21.75 2.25 0.75 21
27 1 21.25 1.75 22.25 1.25 21
28 21 0.75 1.75 22.25 1.25 21
29 1 21.25 22.25 1.75 1.25 21
30 21 0.75 22.25 1.75 1.25 21
31 1 20.75 1.25 20.75 0.75 21
32 21 1.25 1.25 20.75 0.75 21
33 1 20.75 20.75 1.25 0.75 21
34 21 1.25 20.75 1.25 0.75 21
35 1 21.25 0.75 21.25 1.25 21
36 21 0.75 0.75 21.25 1.25 21
37 1 21.25 21.25 0.75 1.25 21
38 21 0.75 21.25 0.75 1.25 21
39 1 20.75 0.25 0.25 0.75 21
40 21 1.25 0.25 0.25 0.75 21
41 1 21.25 20.25 20.25 1.25 21
42 21 0.75 20.25 20.25 1.25 21
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16 THOMAS ET AL.
If the goal of selecting all 8 wanted pathways and supp
ing all 34 unwanted ones could be achieved with pulsed
radients, the HQQC experiment could be done in a single
nd would yield a pure-phase spectrum. However, reph

he 8 vectors of Table 1 necessarily also rephases a
nwanted pathways, meaning that pulsed field gradients c
chieve the same results as phase cycling in this case. In

o select signals from the CH3 groups, it is therefore necessa
o select fewer wanted pathways to allow a suppressive
pace to arise. Various choices for the HQQC experimen
ummarized in Table 2. It can be seen that it is necessa
alve the number of wanted pathways. These results a
omplete agreement with the discussions in Part I (13). Further
o obtain a phase-sensitive spectrum, only certain combina
f wanted pathways can be allowed. One possibility i
cquire two datasets by repeating the experiment, the fir
-type pathways and the second for N-type. The dataset

hen be coprocessed to obtain the phase-sensitive spe
10). In the HQQC experiment, four of the pathways that c
or CH3 signals are P-type (being the first four pathway
able 1), and the remaining four are N-type. A gradient
uence designed to rephase only P-type pathways mus

he N-type pathways as unwanted. The results of calcula
ith TRIPLE_GRADIENT for this problem (using all perio
f free precession) are summarized in line 5 of Table 2. If
athways coding for CH3 signals are classified as wanted,
imensionality of the selective subspace reduces from 4
nd a new one-dimensional suppressive subspace arise

herefore possible to calculate a gradient sequence to sup
nwanted pathways having a component along this one-di
ional subspace. However, some of the unwanted pathwa
ithin the selective subspace spanned by the four wa

TAB
Improved Gradie

Wanted
athways

Periods of
free precession

Dimensions
R

Sel. Sup. Free

ll (1–8) all (1–6) 4 0 2
Any 7 all (1–6) 4 0 2
Any 6 all (1–6) 4 0 2
Any 5 all (1–6) 4 0 2
1–4 all (1–6) 3 1 2 1
5–8 all (1–6) 3 1 2 1

1, 2, 5, 6 all (1–6) 3 1 2
1, 2, 4–6 3 1 1

3–6 2 1 1
3 4–6 2 1 0

1, 5 all (1–6) 2 2 2
1, 2, 4–6 2 2 1

3 2, 4–6 2 2 0
1 all (1–6) 1 3 2

2, 4–6 1 3 0
3 3–6 1 2 1
s-
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an
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34
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-type pathways, and must therefore be rephased (colum
able 2). Pathways {15 . . . 18} code for homonuclear proto
oherence, whose signals should show up as axial peaks
pectrum and can be suppressed by a two-step phase cyc
ephased unwanted pathways {23 . . . 26, 31, 32} code for
ignals from CH and CH2 groups. The suppression of the
eaks is essential for the selection of CH3 groups in the HQQC
xperiment, which would otherwise require a further six-
hase cycle. Similar results are obtained when trying to s
nly N-type pathways (see line 6 of Table 2) so this schem

rying to obtain P- and N-type data with field gradients is
mprovement on an HQQC experiment in which only ph
ycling is used.
A second approach to obtain phase-sensitive spectra

pply gradient sequences that rephase P- and N-type pat
imultaneously. In the HQQC experiment, P-type pathway
} combine with N-type pathways {5, 6} to give pure abso

ion lineshapes. The results of calculations by TRIPLE_G
IENT when pathways {1, 2, 5, 6} are classified as the wa
nes, and pathways {3, 4, 7, 8,9 . . . 42} areunwanted, is
hown as line 7 of Table II. When all periods of free preces
re taken into account, the selective subspace is three-d
ional and the suppressive subspace is one-dimensiona
ctly as in the case when only P- or N-type pathways
anted (lines 5 and 6 of Table 2). However, only 2 of the
nwanted pathways are in the selective subspace, and

herefore necessarily be rephased. Pathways {15, 16}
ode for homonuclear (proton) triple quantum coherence
re not expected to be excited to any great extent in the H
xperiment. The corresponding peaks are axial and ca
uppressed with a two-step phase cycle. This scheme of
ay selection seems to be a definite improvement: the e

2
Pulse Sequences

cused unwanted
pathways Optimal gradient pulses Pena

All (9–42) — —
All (9–42) — —
All (9–42) — —
All (9–42) — —

18, 23–26, 31, 32 (29.0, 29.0, 34.8, 34.8,234.8,21.4) 0.015
22, 27–30, 33, 34 (30.5, 30.5, 36.0, 36.0,28.0, 235.6) 0.018

15, 16 (10.2, 10.2, 0.7, 24.9, 35.8,236.8) 0.014
15, 16 (11.6, 11.6, 0.0, 24.2, 35.8,236.8) 0.014
15, 16 (0.0, 0.0, 5.6, 29.6, 35.1,236.8) 0.014
15, 16 (0.0, 0.0, 0.0, 20.0, 20.0,240.0) 0.017

15 (23.5, 15.1, 1.5, 19.8, 36.5,237.0) 0.016
15 (20.5, 18.0, 0.0, 18.3, 36.3,237.1) 0.016
15 (0.0, 18.0, 0.0, 18.0, 36.0,236.0) 0.016
— (15.3, 1.2, 21.4, 7.2,237.2, 36.4) 0.017
— (0.0,228.0, 0.0, 31.8, 36.6,238.9) 0.025
2 (0.0, 0.0, 28.0, 10.0,240.0, 33.5) 0.017
LE
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ive phase cycle is no longer needed, and the spectra c
cquired in the phase-sensitive mode. However, only ha

he CH3-group pathways are detected, so the signal intens
nly half of that obtained from the phase-cycled HQQC
eriment. When all periods of free precession are taken
ccount, the solution calculated by TRIPLE_GRADIENT s
gradient pulse in every interval of the RF sequence

ndicated in Table II, it is actually possible to obtain the sa
athway selection with fewer gradient pulses: three pu
pplied in the last three periods of free precession, are
ient for the signal selection. If the first of these gradien
witched in the evolution period of the HQQC experimen
ure absorption lineshape can be obtained in a single sc
It is possible to prevent the rephasing of any undes

athway by reducing the number of wanted pathways
urther. If the P-type pathway {1} and the complement
-type pathway {5} are the two wanted pathways, only
nwanted pathway {15} will be rephased in addition (see
of Table II). Line 9 of Table II shows the case of a sin
anted pathway, e.g., {1}: TRIPLE_GRADIENT has cal

ated gradient sequences to suppress all other pathways
xtra pathway amongst the 41 undesired ones, namely pa
2}, is rephased together with the wanted one if gradients
sed in the last four free precession periods of the HQ
xperiment. Pathway {2} is degenerate with the wanted p
ay with regard to these periods, but being rephased caus
roblem because it is one of the eight CH3-group pathways
he signal intensity consequently doubles.
Optimal gradient sequences for different pathway selec

re presented in Table 2. The calculations were performe
he basis that all gradient pulses are assumed to have a
ngular time profile and a duration of 1 ms. All unwan
athways were given the same penalty function (i.e.,w 5 1 in
q. [3.1]). The penalties in Table 2 are the value of the pe

unction evaluated for each solution. For the pathway sele
hown arrowed in the seventh row of Table 2, the penal
.017, for example. According to the calculation, 36 unwa
athways are attenuated by the indicated gradient sequen

he average residual of the suppressed pathways is;0.0005
he output from TRIPLE_GRADIENT lists the residual a
litudes of all unwanted pathways.
We used the gradient sequences shown arrowed in Ta

or HQQC experiments at 290K on a sample of cyclospor
n perdeuterated dimethyl sulfoxide (DMSO). This cyclic p
ide has 16 conformations in DMSO, of which 8 are sign
antly populated, so 83 24 methyl groups should appe
ounting all of the groups in the amino-acid side chains an
ethylated peptide bonds. The sample was not isotopi

abeled, so the unwanted pathways from homonuclear p
oherence (pathways {9 . . . 22} in Table 1) are a hundre
imes stronger than the wanted pathways because of th
atural abundance of13C. To facilitate a complete suppress
f these pathways, a 2-step phase cycle on the first13C RF
ulse and on the receiver is used in all experiments tog
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ith the gradient pulses. This phase cycle also suppress
nwanted pathways {15, 16}, which are rephased by som

he gradient sequences.
To compare the intensities of the signals, 1D spectra

cquired with the RF pulse sequence of Fig. 3. The spec
ig. 4 were obtained from experiments in which grad
equences corresponding to the three shown arrowed in
are applied in conjunction with a two-step phase cycl

escribed above. Figure 4C shows the signals when path
1, 2, 5, 6} are rephased. The signals in Fig. 4B are f
athways {1, 5}, and those in Fig. 4A from pathways {1,
he intensities reflect the number of rephased pathways
pite the fact that the signals are less intense than in the
ycled experiment, the spectra are of a higher quality and
better signal-to-noise ratio. It should be noted that sig

ubtracted in the phase-cycle experiment have an intensit
imes greater than do the signals of interest, and subtra
rrors may cause a high residual noise. In experiments
radients, signals that are further suppressed by the two
hase cycle are much reduced in intensity.

5. DISCUSSION

Gradient selection of coherence transfer pathways must
everal practical requirements to be useful for routine N
pectroscopy. Most importantly, the gradient sequences t
elves should guarantee that the actual NMR experiment
ne required, in the sense of ensuring the capture of the w
ignals and the simultaneous suppression of the unw
nes. This should be done without deleterious consequ
uch as a loss in signal-to-noise ratio caused by an inabil
ephase some of the wanted pathways. Further, the gra
equences are best chosen so that it is easy to obtain pure
pectra in the indirect dimensions without introducing artifa
he ability to suppress selected strong resonances with
ially tuned gradient sequences is of similar importance
ffers the possibility of avoiding the strongt 1 noise that tend

o occur with phase cycling. The TRIPLE_GRADIENT p
ram is designed to offer facilities to match these criteri

ully as possible, and is specifically helpful for trying to des
radient sequences to suppress many unwanted pathways
imultaneously rephasing wanted pathways to obtain p
hase spectra. The number and kind of pathways to be se
r suppressed are chosen by the spectroscopist, and TR
GRADIENT then determines whether or not any approp
radient sequences exist. The program can also be used

ively, as described in the Results section, where an op
nswer to particularly difficult problems can be found
uccessively trading off phased and dephased pathway
ractical applications it should be the ratio of the field gradi

hat is kept as the main result. The maximal strength o
argest gradient in the calculated sequence should the
hosen so that experimental problems such as eddy cu
nd gradient nonlinearities are minimized. In cases wher
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18 THOMAS ET AL.
alculated gradient sequence along all three gradient axes
ame, which is true for most of the cases we have calculat
ar, we recommend the application of the gradient sequen
he magic angle, when a strong solvent signal is present.
voids artifacts arising from local dipolar demagnetiza
elds (32–36).
The algorithm described in this paper is quite different f

ts forerunner, which reformulated the minimization proced
s an eigenvalue problem. This had the undesirable c
uence of dominantly suppressing pathways that were ea
uppress, and failing to suppress adequately those that
ess easy to suppress. The new program concentrates its

ore evenly. Indeed, it should be noted that the exa
hosen in the Results section could be solved only with the
rogram, which explores more thoroughly the space of wa
nd unwanted coherence pathways. The new program

FIG. 4. Observed spectra. Upper row: 1D HQQC spectra of cyclosp
hown. Middle row: selected pathways used for generating the spectra
iddle and right columns yield pure-phase data.
the
so
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izes contributions from different pathways explicitly, a
ach can be weighted individually, neither of which was
ase with the old. For the HQQC sequence used as an ex
n this paper, the new program allowed us to select se
oherence transfer pathways at the same time, while reta
pure-phase spectrum. We expect TRIPLE_GRADIEN

ive experienced spectroscopists the chance to reconsid
pplication of pulsed field gradients in many commonly u
ulse sequences and to obtain spectra of optimal sign
oise ratio and phase properties.

APPENDIX A1

Approximations to Envelope Functions

A major difference between the present and earlier w
12] is the use of envelope functions to describe the ge

in DMSO solution at 290 K. Only the region comprising theN-methyl groups is
ve. Lower row: gradient sequences used for pathway selection. The pan the
orin
abo
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19NMR SIGNAL SELECTION: II. GRADIENT PULSE SEQUENCE DESIGN
ecay of the functions sinc and 2J1(v)/v. The sinc(v) function
s the easier to deal with because the envelope away from
entral maximum has an exactly known form, namely 1uvu.
his diverges asuvu 3 0, grossly misrepresenting the tr
nvelope in this region. It is therefore necessary to fin

unction that properly represents the sinc function near
rigin and also osculates with 1/uvu at some suitable blend po
we usev 5 p, though the precise value is not critical). It
esirable that the second derivative of the envelope functio
verywhere smooth, because of its important role in the

mization procedure, and we therefore decided that all de
ives up to and including the sixth should be continuous. T
s no unique solution to this problem, and we chose to u
plined polynomial because the coefficients of such app
ants are easily computed with a pocket calculator, and
ave computationally simple derivatives. The exact metho
alculating such polynomials has already been described
here in a different context (28).
The sinc function is even, and its envelope, sincenv

onsequently also symmetric about the origin, which m
ead one to think that a polynomial approximant about
rigin must also be even. We did calculate several such
roximants, but it turned out to be better to make one of m
arity and to reflect it at the origin, because this leads to fe
umerical problems and to smaller higher derivatives betw

he blend points. Indeed, we even chose to use an approx
hat actually falls slightly below the central peak of the s
unction for the same reasons, though there is no diffic
nding solutions that are never below the true envelope
ig. 5). In our application, this level of approximation
incenv is more than adequate.
We treat the envelope of 2J1(v)/v in much the same wa

xcept that Bessenv cannot easily be computed to the
egree of accuracy as sincenv. The reason for this is si

hat we do not have an accurate analytic form for the enve
n the region of interest. The asymptotic form is normally gi
sp/2v23/2, but this underestimates peaks near to the origi
few percent. However, this level of accuracy is also m

han adequate. The splined polynomial that we use is now
ess than 2J1(v)/v and osculates withp/2v23/2 at v 5 3p/2 (see
ig. 6). The position of this blend point is also not critical, a

t was chosen on the basis of well-controlled higher deriva
f the resulting polynomial.

APPENDIX A2

The Method of Minimization

It is fortunate that in our method the total penalty functio
e minimized is very smooth and has a known analytic fo
he first and second derivatives necessary for an effi
inimization based on the method of Raphson and Newto
lso smooth and calculable without approximation: indeed
he
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pproximations Bessenv and sincenv were deliberately c
ated with the smoothness of their second derivatives in m

It is a basic and useful property of a stationary point in
umber of dimensions that the slope of the function b
onsidered is zero. Minima are a special class of statio
oint having the additional property that the local curvatu
nconditionally positive with respect to any small change
ny of the free parameters. This means that the matr
econd derivatives (referred to here as the Hessian matrix
e expected to be positive definite at the minimum that we
eeking. The Hessian matrix also gives us the possibili
dentifying other types of stationary points, i.e., saddle po
nd maxima, though, importantly, it cannot distinguish a l

rom a global minimum.
In the method of Raphson and Newton, which can be

idered for most practical purposes to be the most effi
eans of finding the zero-crossing point of a (scalar) func
f a single variable, an improved estimate of the solution,
9, is found by substituting iteratively the current best estim
f the solution, saya, into the assignment:a9 4 a 2
f 9(a)] 21f(a), where f 9(a) is the first derivative off with
espect to its argument ata (27). This method applies witho

FIG. 5. The sincenv function. The envelope over the sinc function re
enting residual signal amplitudes in theZ-direction.
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20 THOMAS ET AL.
odification to vector functions of an arbitrary number
arameters, so long as [f 9] 21 is taken to mean when necess
generalized matrix inverse (21, 22, 24–26) sincef 9 may be a
onsquare matrix. In the present application, all that we ne
o is to replacea by our free parameterst X, t Y, t Z arranged in
linear (vector-like) array, and replacef by the gradient of th
enalty function, i.e.,¹ t(N 1 P), which we call the Jacobia
atrix. The derivative functionf 9 in the method of Raphso
nd Newton becomes the curvature, i.e., the Hessian mat
econd derivatives of the combined penalty function, so
teration becomes

t94 t 2 @¹ t
2~N 1 P!# 21¹ t~N 1 P!. [A2.1]

his iteration achieves quadratic (i.e., rather fast) converg
oward any stationary point of ellipsoidal geometry, as
umed implicitly in its derivation because of the use of sec
erivatives. Slower convergence than might naı¨vely be ex-
ected is sometimes observed. The reason for this is th

ree-parameter spaces of higher dimension, the instrum
enalty function and the NMR penalty function combine

FIG. 6. The Bessenv function. The approximate envelope over
J1(v)/v function representing residual signal amplitudes in theXY-plane.
f

to

of
e

ce
-
d

in
tal

orm a sum whose minima are curved so that they can ha
hape rather like a banana, and are often even more sinuo
uch a situation, even the accurate knowledge that our pro
as of the local curvature is clearly insufficient to prescrib
apid path to the minimum. It would be natural to ask whe
minimization taking into account third or higher derivati
ight perform better. We have not tried this for two reas

he first is that the number of derivatives of even a sc
unction rises as the number of parameters raised to the
f the derivatives required, meaning a potentially enorm
xtra computational cost per iteration; the second is
chemes using higher derivatives have a tendency to be
nstable, and are thus doubly unattractive.
It is not necessary to evaluate the inverse of the Hes
atrix explicitly, since only its product with the Jacobian

equired, and this lesser calculation is performed reliabl
he elegant and widely accepted conjugate gradient
ithm (20).

The curvature of the instrumental penalty function,P, is
ositive everywhere inside the bounding divergences (see
), which causes no problems. However, the NMR pen

unction N, being a sum of envelope functions crossing
any different directions, has a unique maximum at the o
f wavevector space, and an indefinite number of saddle p

e

FIG. 7. The instrumental penalty function. This function rises smooth
nfinity at the maximum achievable field gradient in a given direction.
epresented figuratively with the sincenv function, though in fact they
pecified in different spaces displayed with coincident origins.
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21NMR SIGNAL SELECTION: II. GRADIENT PULSE SEQUENCE DESIGN
f no action were taken to avoid it, these could all ac
ttractors if Eq. [A2.1] were used as it stands. To some ex

he method used to prevent this from happening is arbitra
ne might even say a matter of taste. The method that we
sed, with success, is to find the most negative diagona
ent of the Hessian matrix, and then if it is actually nega

o subtract its value from the entire diagonal. This is the s
s adding a positive multiple of the identity matrix and has
ffect of distorting the curvature just sufficiently to prevent
ttraction to the nonminimal stationary point. In this way,
lgorithm always moves in the downhill direction. It has tur
ut to be necessary in practice to limit the amount by which
iagonal of the Hessian may be loaded, to prevent nume
verflows in the conjugate gradient routine. In cases wher
addle point curvature is more extreme, the algorithm sim
teps a fixed distance along the vector represented b
acobian. It is rare for this action to occur more than once
inimization.
It can happen that the curvature represented by the He

s so small that the calculated change in the free param
ould place them outside of the allowed region. To pre

his from happening, the length of the vector representing
hange is modified by a formula based on the hyperb
angent. This has the property of leaving small changes
ered, since the function has unit slope at the origin, but li
arge changes to some preset value.

Though the mathematical properties of the total pen
unction per se are unexceptionable, the differences betwe
xtremal slopes and curvatures are rather large, and i
ecessary to be more than usually careful about the com

ional implementation to prevent floating-point overflows
he conjugate gradient routine.

APPENDIX A3

The Construction of the Gradient Pulse Sequences

We follow earlier work (12) and create field-gradient pul
equences as a linear superposition of allowed profile
vectors,” represented here asS. Allowed profiles are define
s having the property of not reducing the amplitude of sig
rising from wanted coherence transfer pathways. It o
appens that the number of such vectors exceeds the d
ionality of the space that they span. In the earlier work,
egeneracy was removed by using a Gram–Schmidt algo

o create a minimal “suppressive” set of orthogonal vec
e also make use of the Gram–Schmidt algorithm, bu

ormally keep all of the extra vectors. These have the pro
within the level of approximation used throughout this pa
f affecting none of the specified coherence transfer pathw
anted or unwanted, and are hence called “free.” In the e
ork, their inclusion in the analysis would have served
urpose, but once the instrumental limit on the strength of
iven gradient pulse is taken into account, then the e
s
t,
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mplied degrees of freedom allow the gradient pulse sequ
o be adjusted or trimmed to make fuller use of the capabi
f the equipment. As far as the minimization procedur
oncerned, it makes little difference whether a given pr
elongs to the suppressive or to the free set, and the
onsequently grouped together in the form represented h
. We thus write the sequence of field gradient pulses in
-direction as

g r
A 5 O

i

Sri t i
A. [A3.1]

n this equation, thet are the free parameters of our analy
hich are varied independently in order to find the minimum

he overall penalty function. There is some freedom of in
retation of notation here. For example, in the minimiza
outine, it makes sense to think of the parameterst X, t Y, t Z as
eing arranged in a linear (vector-like) array, whereas the
ore correctly interpreted as a set of three independen
uences of identical length, and thus might appear to fit m
aturally into matrix notation. However, these interpretat
re of only secondary importance, and to prevent the pos

ty of any confusion, we have retained a full index nota
herever necessary. The set of allowed profiles,S, is unprob-

ematic, and it need be noted only that it is a fixed quan
nder the minimization and is the same for all three grad
irections; it also always appears in the equations in a pos
here it can be represented naturally as a matrix.
The minimization is performed with respect to change

he free parameters, whereas the physical problem de
irectly on the individual field-gradient pulses. The two
oupled by the derivatives:

­g r
A

­t i
A 5 Sri , [A3.2]

hich enter into the equations via the chain rule of the di
ntial calculus. All other derivatives ofg vanish, whether the
e mixed or of higher order.

APPENDIX A4

Minimizing the Instrumental Penalty Function

The Jacobian and Hessian matrices of the instrumenta
lty function are computed in a stepwise fashion using
hain rule. We calculate the first derivative with respect to
hange in integrated strength of an individual field grad
ulse as

­P

­g
5

cĝ4g
~ĝ2 2 g2! 2 . [A4.1]
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t will be noticed immediately that the sum in Eq. [3.2] h
anished. This is because theg here refers to a single gradie
ulse, and only the term under the summation with the s

ndices survives the differentiation, the others being inde
ent variables. The second derivative with respect to the

ntegrated field gradient pulse strength is then given by

­ 2P

­g2 5
cĝ4

~ĝ2 2 g2! 2 1
4cĝ4g2

~ĝ2 2 g2! 3 . [A4.2]

t is now possible to see whyP has the form that it does, f
f g4 0, then­ 2P/­g2 5 c, the chosen curvature at the orig

The terms of the Jacobian matrix, here labeled explicitly
alculated using the chain rule and Eq. [A3.2]:

­P

­t i
A 5 O

r

­g r
A

­t i
A

­P

­g r
A 5 O

r

Sri

­P

­g r
A . [A4.3]

he Hessian terms are also calculated in a similar way:

­ 2P

­t i
A­t j

A 5 O
r

­g r
A

­t i
A

­g r
A

­t j
A

­ 2P

­g r
A2 5 O

r

SriSrj

­ 2P

­g r
A2 . [A4.4]

his formula may appear simpler than might be expected
ndeed is so. The reason is thatg, being linear, has no seco
erivatives, so that the additional terms generated by takin
erivative of the product in Eq. [A4.3] disappear.

APPENDIX A5

Minimizing the Unwanted NMR Signals

We follow the previously published geometrical descrip
12), in which both the sequence of field gradient pulses
iven direction and the matching composite coherence o
re represented as “vectors.” The interaction between th

hen represented by the inner product between the two ve
n our case, since we are considering up to three gra
irections, our gradients themselves become a vector fun
nd a matrix might be a more appropriate representatio
hem, the more especially since the result is actual
avevector. However, the derivatives do not follow a uni
tructure since they are related to the shape of the spec
hich is assumed to be a cylinder aligned along theZ-axis.
his fact largely abolishes any advantage of matrix nota
nd we have consequently not adopted it here. We thus

he X-component of the wave-vector (which appertains to
-gradients) as

uk x 5 gpu z gX 5 g O
r

pru O
i

Sri t i
X [A5.1]
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en,
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ite
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ith strictly analogous equations for theY- andZ-gradients. I
atrix notation had been used, these three equations w
ave been writtenk 5 gpg, wherek [ (uk x, uk y, uk z).
The cylindrical symmetry of the specimen implies a cy

rical symmetry in its Fourier transform as well, so long a
emains properly centered, as assumed here, and this
hat the results cannot depend on azimuthal angle, but on
adius:

uk r 5 ~uk x
2 1 uk y

2! 1/ 2. [A5.2]

he derivatives of this radius are needed for the chain rule
o calculate terms for the minimization and are given by

­uk r

­uk x
5

uk x

uk r
and

­uk r

­uk y
5

uk y

uk r
. [A5.3]

s mentioned in the main body of the paper, we make an N
enalty function to be minimized formed as the sum o
pproximate model of the likely amplitudes of all of the
anted NMR signals, quoted again here in a fuller form:

N 5 O
u

wu Bessenv~uk rR!sincenv~uk zL!. [A5.4]

he fact that we use envelope functions rather than the i
zed product in Eq. [2.2] has important consequences. The
s that the overall penalty function is extremely smooth, and
re not trapped by a multitude of zeroes as would happen

2.2] were used directly. The second is that the enve
unctions are still thought to apply more or less accurate
he sample should depart from ideality in any way, suc
eing miscentered or not exactly cylindrical.
The terms in the Jacobian matrix derived from Eq. [A5

plit because of the cylindrical symmetry into ones along
-axis,

­N

­t i
Z 5 O

u

O
r

wu Bessenv~uk rR!

3 gpruSriL
­ sincenv~v!

­v u v5ukzL. [A5.5]

nd ones along theX- andY-axis,

­N

­t i
X 5 O

u

O
r

wugpruSri
uk x

uk r
R

3
­ Bessenv~v!

­v u v5uk rR sincenv~uk zL!. [A5.6]
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nly the equation for theX-axis is given, because the equat
or the Y-axis follows the same form.

The split caused by cylindrical symmetry has an incre
ffect when considering the terms of the Hessian matrix.
ave first the pure second derivative along theZ-axis:

­ 2N

­t i
Z­t j

Z 5 O
u

O
r

O
s

wu Bessenv~uk rR!

3 g 2prupsuSriSsjL
2
­ 2 sincenv~v!

­v 2 u v5ukzL. [A5.7]

here is then the mixed second derivative, when one axisZ
nd the other is eitherX or Y:

­ 2N

­t i
X­t j

Z 5 O
u

O
r

O
s

wug
2pruSri

uk x

uk r
R

3
­ Bessenv~v!

­v u v5uk rR psuSsjL

3
­ sincenv~v!

­v u v5ukzL. [A5.8]

gain, the equation referring theY-axis is not given, since
ollows the same form by direct substitution. The pure sec
erivative with respect to theX is given by

­ 2N

­t i
X­t j

X 5 O
u

O
r

O
s

wug
2prupsuSriSsjR

3 H uk x
2

uk r
2 R

­ 2 Bessenv~v!

­v 2 U
v5uk rR

1
uk y

2

uk r
3

­ Bessenv~v!

­v u v5uk rR% sincenv~uk zL!,

[A5.9]

nd the equation for the pure secondY-derivative follows by
ymmetry. Finally, there is the mixed second derivative
espect to theX-axis andY-axis:

­ 2N

­t i
X­t j

Y 5 O
u

O
r

O
s

wug
2prupsuSriSsj

uk xuk y

uk r
2 R

3 HR
­ 2 Bessenv~v!

­v 2 U v5uk rR

2
1

uk r

­ Bessenv~v!

­v U v5uk rRJsincenv~uk zL!.

[A5.10]
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APPENDIX A6: NOMENCLATURE

an axis, i.e.,X, Y or Z
a magnetic field

essenv an approximation to the envelope of the func
2J1(v)/v

the curvature at the origin of the instrumental p
alty function

the time profile of a pulsed field gradient
the number of free precession periods
an array of pulsed field-gradient strengths repres

ing a pulse sequence
X an array of fieldX-gradient pulse strengths; sim

larly gY, gZ

ˆ the maximum permitted strength of a gradi
pulse

, j indices to a free parameter
a Bessel function of the first kind (23)
the length of the sample, assumed cylindrical
a penalty function representing unwanted NMR

nals
, s indices to a pulse within a sequence

a penalty function representing instrumental lim
tions

an array of composite coherence orders
the radius of the sample, assumed cylindrical

r the radial component of a wavevector (i.e., in theX,
Y-plane)

uk r the radial component of a wavevector relating
pathwayu

a set of allowable gradient pulse sequences
inc the sinc(v) 5 sin(v)/v function
incenv an approximation to the envelope of the sinc f

tion
a free parameter

X a free parameter varying gradients along theX-axis;
similarly t Y, t Z

time
an index denoting an unwanted coherence tran

pathway
a general scalar argument
a weighting factor for a given unwanted cohere

transfer pathway

uk x the component along theX-direction of a wavevec
tor relating to pathwayu; similarly uk y, uk z

, Y the X- andY-axes (across the Zeeman field)
the Z-axis (along the Zeeman field)

z the component of a wavevector along theZ-direc-
tion

a gyromagnetic ratio (usually of the proton)
an approximation to the expected amplitude o

NMR signal
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